ALGORITHM FOR TRANSFORMATION OF WIND ROSE BY INCREASING OR DECREASING OF COMPASS DIRECTIONS

I. Butchvarov¹, N. Gromkova²

Geophysical Institute, Bulgarian Academy of Sciences, 1113 Sofia, Acad. G. Bonchev Str., block 3, Bulgaria – www.geophys.bas.bg

¹Section of Geomagnetism and Gravimetry – buch@geophys.bas.bg

² Section of Atmospheric Physics – gromkova@geophys.bas.bg

Abstract. The necessity to transform the standard (for Bulgaria) climatic 8-point wind roses, named *Observed Wind Roses* (OWR), was described in previous paper of the authors - Gromkova at al. The algorithm of calculation of the so-called *Primitive Wind Rose* (PWR) and further on the *Transformed Wind Rose* (TWR) in different number of compass directions then 8 is the purpose of the present paper.

Keywords: air pollution, wind rose.

Abbreviations:

PWR – Primitive Wind Rose
c.d.f cumulative distribution function
p.d.f. – probability density function

Introduction

The standard wind roses are represented with 8-compass directions – one for each 45° of the horizon, in the Climatic reference book of Bulgaria (1982). It was shown in a previous paper (Gromkova et al. 20 ..) that using a standard wind rose the determination of the annual mean air pollution concentration field from a point source is not adequate. For this reason the presented algorithm to transform the 8-point wind rose to a rose with more (or less, if it necessary) compass direction was created.

In Gromkova at al., 20... a wind direction was adopted as stochastic event and a random variable X with a corresponding *cumulative distribution function* – F(x) and a *probability density function* – $p(x,\theta)$ was associated to it. In the present paper an algorithm for obtaining the *probability density function* – $p(x,\theta)$ (p.d.f.) of the so-called *Observed Wind Roses* (OWR) – the rose from the Climatic reference book of Bulgaria (1982), and then to calculate the so-called *Transformed Wind Rose* in different compass directions (usually more) is presented.

Determination of the parameter θ of the function $p(x, \theta)$

Variant 1

The function $p(x,\theta)$ – probability density function – in this variant has the form:

$$p(x,a_i,b_i) = a_i + b_i x \tag{1}$$

in the intervals $(x_i, x_{i+1}]$. Between every two compass directions there is only one straight line. There are 2*n* unknowns: a_i – the *y*-intercept, and b_i – the slope of the line, if the compass directions are *n*. A method for determining the unknowns is given below:

Replacing $N(x_i)$ and $N(x_1)$ in the integrals of formulas (1) and (2) in Gromkova at al, 20..., by the empirical estimates \hat{N}_i and \hat{N}_1 , and substituting x_i by $x_i = 2(i-1)t$ in the limits of the integrals, the following expressions are obtained:

$$\hat{N}_{i} = \int_{(2i-3)t}^{2(i-1)t} (a_{i-1} + b_{i-1}z) dz + \int_{2(i-1)t}^{(2i-1)t} (a_{i} + b_{i}z) dz, \quad i = 2, 3, ..., n,$$
$$\hat{N}_{1} = \int_{(2n-1)t}^{2nt} (a_{n} + b_{n}z) dz + \int_{0}^{t} (a_{1} + b_{1}z) dz \quad i = 1 \quad (x_{1} = 0).$$

After integration and some transformations the following relations are reached:

$$M_i = d_{i-1} + d_i + (4i - 5)b_{i-1} + (4i - 3)b_i, \quad i = 2, 3, \dots, n,$$
(2)

$$M_1 = d_n + d_1 + (4n - 1)b_n + b_1, \quad i = 1,$$
(3)

where $M_i = 2 \hat{N}_i / t^2$ and $d_i = 2a_i / t$.

The condition the strength lines defined with (1) to have equal values on both sides of the compass direction points (Gromkova et al, 20....) is:

$$d_i + 4(i-1)b_i = d_{i-1} + 4(i-1)b_{i-1}, \quad i = 2, 3, \dots, n,$$
(4)

$$d_1 = 4nb_n + d_n, \quad i = 1.$$
 (5)

The equations (2), (3), (4) and (5) represent a system of 2n linear equations in 2n unknowns. The solution of the system in brief follows:

The differences $M_{i+1} - M_i$ and the sums $d_{i+1} + d_i$ are made:

$$M_{i+1} - M_i = d_{i+1} - d_{i-1} - (4i - 5)b_{i-1} + 2b_i + (4i + 1)b_{i+1}, \ i = 2, 3, \dots, n - 1, (6)$$

$$M_2 - M_1 = d_2 - d_n - (4n - 1)b_n + 2b_1 + 5b_2, \ i = 1,$$
(7)

$$d_{i+1} - d_{i-1} = 4(i-1)b_{i-1} + 4b_i - 4ib_{i+1}, \quad i = 2, 3, \dots, n-1,$$
(8)

$$d_2 - d_n = 4b_n + 4b_1 - 4b_{i+1}, \quad i = 1.$$
(9)

The differences from (6) and (7) are replaced in the differences (8) and (9). A system of (n - 1) equations in *n* unknowns in respect of b_i is obtained:

$$M_{i+1} - M_i = b_{i-1} + 6b_i + b_{i+1}, \quad i = 2, 3, \dots, n-1,$$
(10)

$$M_2 - M_1 = b_n + 6b_1 + b_2, \quad i = 1.$$
(11)

Summarizing the equations (4) and (5) for i from 1 to n, the following expression is reached:

$$\sum_{i=1}^n b_i = 0.$$

Adding the last equality to (10) and (11) a system of n equations in n unknowns in respect of b_i is obtained.

The system is presented in a matrix form as A.B = F, where F is a column-vector with components $f_i = M_{i+1} - M_i$, for i = 1, 2, ..., n - 1, and $f_n = 0$, B is a column-vector with components the unknowns b_i , and A is a quadratic matrix of order n of the system coefficients. The system can be written as follows too:

$$\begin{pmatrix} u & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ 1 & u & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & u & 1 & \cdots & 0 & 0 & 0 & 0 \\ \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & u & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & u & 1 \\ 1 & 1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \cdots \\ b_{n-2} \\ b_{n-1} \\ b_n \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \cdots \\ f_{n-2} \\ f_{n-1} \\ 0 \end{pmatrix} .$$

The diagonal elements, marked with u, are equal to 6. For obtaining the inverse matrix A^{-1} the matrix A is divided in 4 blocks:

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{\alpha}_{11} \ \boldsymbol{\alpha}_{12} \\ \boldsymbol{\alpha}_{21} \ \boldsymbol{\alpha}_{22} \end{pmatrix},$$

where α_{11} is a quasidiagonal matrix (Jacobian) of order n - 1 with main diagonal elements equal to 6 and with adjacent off-diagonal elements equal to 1, α_{12} is a column-vector with components $(\alpha_{12})_1 = 1$ and $(\alpha_{12})_{n-1} = 1$, and remaining elements equal to 0, α_{21} is a rowvector with components equal to 1, and α_{22} is a scalar equal to 1, too.

The inverse matrix is represented in blocks, too (Demidovitch and Maron, 1960):

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{\beta}_{11} \ \boldsymbol{\beta}_{12} \\ \boldsymbol{\beta}_{21} \ \boldsymbol{\beta}_{22} \end{pmatrix}$$

where:

$$\beta_{11} = \alpha_{11}^{-1} - \beta_{12} \alpha_{21} \alpha_{11}^{-1}, \qquad (12)$$

$$\beta_{12} = \alpha_{11}^{-1} \alpha_{12} (\alpha_{22} - \alpha_{21} \alpha_{11}^{-1} \alpha_{12})^{-1}, \qquad (13)$$

$$\beta_{21} = -\beta_{22}\alpha_{21}\alpha_{11}^{-1}, \tag{14}$$

$$\beta_{22} = (\alpha_{22} - \alpha_{21}\alpha_{11}^{-1}\alpha_{12})^{-1}.$$
(15)

In the expressions above α_{11}^{-1} is the inverse matrix of α_{11} . As the matrix α_{11} is symmetrical, the inverse matrix α_{11}^{-1} is symmetrical, too. Let's denote the elements of α_{11}^{-1} by c_{ij} (*i*, *j* = 1, 2, ..., *n* - 1). It is possible to prove (see Appendix), that the analytical expression of c_{ij} is represented by the formula:

$$c_{ij} = -\frac{(Q^i - P^i)(Q^{n-j} - P^{n-j})}{(Q - P)(Q^n - P^n)}, \quad i \le j \le n - 1,$$
(16)

where

$$P = (\sqrt{u^2 - 4} - u)/2$$
 and $Q = -(\sqrt{u^2 - 4} + u)/2$

Using the formula for c_{ij} it can be demonstrated that the elements of the matrices (blocks) $-(\beta_{11})_{ij}, (\beta_{12})_i, (\beta_{21})_j$ and (β_{22}) have the form:

$$\begin{split} (\beta_{11})_{ij} &= \frac{Q(Q^{j}-1)(Q^{i-j}-Q^{n-i})}{(Q^{2}-1)(Q^{n}-1)} , \quad j < i \le n-1 \\ (\beta_{11})_{ij} &= \frac{Q(Q^{n-j}-1)(Q^{j-i}-Q^{i})}{(Q^{2}-1)(Q^{n}-1)} , \quad i \le j \le n-1 \\ (\beta_{12})_{i} &= \frac{(Q-1)(Q^{n-i}+Q^{i})}{(Q+1)(Q^{n}-1)} , \qquad i \le n-1, \\ (\beta_{21})_{j} &= \frac{Q(Q^{n-j}-1)(Q^{j}-1)}{(Q^{2}-1)(Q^{n}-1)} , \qquad j \le n-1, \\ (\beta_{22}) &= \frac{(Q-1)(Q^{n}+1)}{(Q+1)(Q^{n}-1)} . \end{split}$$

The elements of the inverse matrix A^{-1} can be determined by using the formulas of the blocks β_{11} , β_{12} , β_{21} and β_{22} – the expressions (12), (13), (14) and (15). Finally, after the multiplication $B = F A^{-1}$ the strength line coefficients b_i are determined according to the next expression:

$$b_{i} = \frac{Q}{(Q^{2} - 1)(Q^{n} - 1)} \times \left[\sum_{j=1}^{i-1} (Q^{j} - 1)(Q^{i-j} - Q^{n-i})f_{j} + \sum_{j=i}^{n} (Q^{n-j} - 1)(Q^{j-i} - Q^{i})f_{j}\right], \quad i = 1, ..., n.$$

To obtain the unknown d_i (respectively a_i), d_n is defined by the expression (5), then it is substituted in (3) and d_1 is represented by:

$$d_1 = (M_1 + b_n - b_1) / 2.$$

The remaining unknowns d_i for i = 2, ..., n are defined recursively by the formula (8):

$$d_i = d_{i-1} + 4(i-1)(b_{i-1} - b_i).$$

The coefficients a_i are obtained by the following expression:

$$a_i = t d_i / 2.$$

Variant 2

The analytical expression of the function p(x, a) in this case has the form:

$$p(x,a_i)=a_i,$$

defined in the intervals $(x_i - t, x_i + t]$, for i = 2, 3, ..., n, and in the intervals (360 - t, 360] and (0,t] for i = 1, i.e. for $x_1 = 0$. The unknowns are *n* for *n* directions.

The determination of these constants is as follows:

$$a_i = \hat{N}_i / 2t \, .$$

Appendix

Let c_{ij} are the elements of the inverse matrix α_{11}^{-1} . Then the following matrix equality is satisfied:

(c_{11})	c_{12}	c_{13}	•••	$C_{1,n-3}$	$C_{1,n-2}$	$c_{1,n-1}$		(u	1	0	•••	0	0	0)	
c21	c_{22}	<i>c</i> ₂₃		$C_{2,n-3}$	$C_{2,n-2}$	$C_{2,n-1}$		1	и	1		0	0	0	
c ₃₁	$c_{12} \\ c_{22} \\ c_{32} \\ \dots$	<i>c</i> ₃₃		$C_{3,n-3}$	$C_{3,n-2}$	$C_{3,n-1}$		0	1	и		0	0	0	
				•••			×			•••		•••			=E'
<i>C</i> _{<i>n</i>-3}	$c_{n-3,2}$ $c_{n-2,2}$ $c_{n-1,2}$	$C_{n-3,3}$		$C_{n-3,n-3}$	$C_{n-3,n-2}$	$C_{n-3,n-1}$		0	0	0		и	1	0	
C_{n-2}	$c_{n-2,2}$	$C_{n-2,3}$		$C_{n-2,n-3}$	$C_{n-2,n-2}$	$C_{n-2,n-1}$		0	0	0		1	и	1	
C_{n-1}	$_{,1}$ $c_{n-1,2}$	$C_{n-1,3}$		$C_{n-1,n-3}$	$C_{n-1,n-2}$	$C_{n-1,n-1}$)	0	0	0		0	1	u)	

where *E* is the unit matrix. After multiplication of the *i*-th row of α_{11}^{-1} by all columns of α_{11} , the following equations are obtained:

$$uc_{i1} + c_{i2} = 0,$$

$$c_{i1} + uc_{i2} + c_{i3} = 0,$$

...

$$c_{ii-1} + uc_{ii} + c_{i,i+1} = 1,$$

$$c_{ii} + uc_{i,i+1} + c_{i,i+2} = 0,$$

...

$$c_{i,n-3} + uc_{i,n-2} + c_{i,n-1} = 0,$$

$$c_{i,n-3} + uc_{i,n-2} + c_{i,n-1} = 0,$$

$$c_{i,n-2} + uc_{i,n-1} = 0.$$
(18)

It is obvious that for $i = 2, 3, ..., n-3, j > i, c_{ij}$ satisfies the recurrence relation:

$$c_{i,j-1} + uc_{ij} + c_{i,j+1} = 0. (19)$$

To obtain the common term of this recursion, its characteristic equation is used (Markushevitch, 1975):

$$q^2 + uq + q = 0.$$

The roots of this equation, denoted by P and Q, are:

$$P = (\sqrt{u^2 - 4} - u)/2$$
 and $Q = -(\sqrt{u^2 - 4} + u)/2$.

They are real when $u \ge 2$, i.e. in the discussed case, because u = 6: $Q = -(\sqrt{8} + 3) \approx -5.8284$. The common term of the relation (19) is presented by the expression (Markushevitch, 1975):

$$c_{ij} = G_i P^{j-i} + H_i Q^{j-i}, \quad i = 2, 3, ..., \quad n-3, j > i.$$
 (20)

The coefficients G_i and H_i are different for each *i*, i.e. for every row.

The first two terms of the above expression – for j = i and j = i + 1 – have the form:

$$c_{ii} = G_i + H_i, \tag{21}$$

$$c_{i,i+1} = G_i P + H_i Q, \tag{22}$$

and the last two – for j = n-2 and j = n-1:

$$c_{i,n-2} = G_i P^{n-2-i} + H_i Q^{n-2-i},$$
(23)

$$c_{i,n-1} = G_i P^{n-1-i} + H_i Q^{n-1-i}.$$
(24)

To determine the unknown coefficients G_i and H_i the equalities (17), written in the form:

$$uc_{ii} + c_{i,i+1} = D_{ii-1}, (25)$$

and the expression (18), that are not terms of the recurrence relation (19), are used too. $D_{i,i-1}$ in the above expression according (17) is $D_{i,i-1} = 1 - c_{i,i-1}$. As the matrix α_{11}^{-1} is symmetric $c_{i,i-1} = c_{i-1,i}$. However the element $c_{i-1,i}$ is determined from the recurrence relation by multiplication of the *i*-1-th row and therefore $D_{i,i-1}$ is determined too.

It is known that u = -(P + Q) and PQ = 1 for the roots of the quadratic equation. Replacing (21) and (22) in (25), (23) and (24) in (18) and u in (25) and (18) and after some processing the following system of equations for G_i and H_i is obtained:

$$G_i Q + H_i P = -D_{i,i-1},$$

$$G_i P^{n-i} + H_i Q^{n-i} = 0.$$

The solution of the system in respect to G_i and H_i is:

$$G_i = -\frac{Q^{n-i}}{Q^{n+1-i} - P^{n+1-i}} D_{i,i-1},$$
(26)

$$H_{i} = \frac{P^{n-i}}{Q^{n+1-i} - P^{n+1-i}} D_{i,i-1}.$$
 (27)

Determining $D_{i,i-1}$, for i = 2, 3, ... and s.o., it can be shown that

$$D_{i,i-1} = \frac{(Q^{i} - P^{i})(Q^{n+1-i} - P^{n+1-i})}{(Q - P)(Q^{n} - P^{n})}.$$

After replacing $D_{i,i-1}$ in (26) and (27) and then G_i and H_i in (26), the expression (16) in the main text – the formula for the coefficients c_{ij} – is reached.

References

Climatic reference book of Bulgaria, Part 4, WIND, 1982.

- Demidovitch, B. P., and I. A. Maron, 1960. *Bases of the Numerical Mathematics*, 659pp., Gos. Izd. Phys.-Mat. Lit., Moscow (in Russian).
- Gromkova, N., and I. Butchvarov., 20... Applying a model for transforming an climatic wind rose defined in "*n*" to a "*m*" compass directions rose for the air pollution assessment of the point source, *Bulg. Geoph. Journal*

Markushevitch, A. I., 1975. Recurrence Relations, 47pp., "Nauka", Moscow (in Russian).

Алгоритъм за преобразуване на розата на вятъра чрез увеличаване или намаляване на румбовете

И. Бъчваров, Н. Громкова

Резюме.. Необходимостта да се преобразува стандартната за България климатична 8румбова роза на вятъра (наречена тук *Наблюдателна Роза на Вятъра* (НРВ)) възникна във връзка с определянето на концентрацията на климатичното (средногодишното) замърсяване на въздуха от точков източник, което е основна цел на оценките на въздействие върху околната среда (т.н. OBOC). В предната публикация (Gromkova at al.) бяха представени редица теоретични примери за преимуществата на разработения алгоритъм за трансформиране на розата на вятъра при получаване на полето на приземните концентрации, в сравнение с използването на 8-румбовата роза, дадена в климатичния справочник. Тук е представен математическия апарат, използуван за получаване на рози с различен брой румбове.