ALGORITHM FOR TRANSFORMATION OF WIND ROSE BY INCREASING OR DECREASING OF COMPASS DIRECTIONS

I. Butchvarov ${ }^{1}$, N. Gromkova ${ }^{2}$
Geophysical Institute, Bulgarian Academy of Sciences, 1113 Sofia, Acad. G. Bonchev Str., block 3, Bulgaria - www.geophys.bas.bg
${ }^{1}$ Section of Geomagnetism and Gravimetry - buch @ geophys.bas.bg
${ }^{2}$ Section of Atmospheric Physics - gromkova@ geophys.bas.bg

Abstract

The necessity to transform the standard (for Bulgaria) climatic 8-point wind roses, named Observed Wind Roses (OWR), was described in previous paper of the authors - Gromkova at al. The algorithm of calculation of the so-called Primitive Wind Rose (PWR) and further on the Transformed Wind Rose (TWR) in different number of compass directions then 8 is the purpose of the present paper.

Keywords: air pollution, wind rose.

Abbreviations:

```
OWR - Observed Wind Roses PWR - Primitive Wind Rose
TWR - Transformed Wind Rose c.d.f. - cumulative distribution function
DWR - Discrete Wind Rose
```

$$
\begin{aligned}
& \text { PWR - Primitive Wind Rose } \\
& \text { c.d.f. - cumulative distribution function } \\
& \text { p.d.f. - probability density function }
\end{aligned}
$$

Introduction

The standard wind roses are represented with 8-compass directions - one for each 45° of the horizon, in the Climatic reference book of Bulgaria (1982). It was shown in a previous paper (Gromkova et al. 20 ..) that using a standard wind rose the determination of the annual mean air pollution concentration field from a point source is not adequate. For this reason the presented algorithm to transform the 8-point wind rose to a rose with more (or less, if it necessary) compass direction was created.

In Gromkova at al., $20 \ldots$ a wind direction was adopted as stochastic event and a random variable X with a corresponding cumulative distribution function $-F(x)$ and a probability density function $-p(x, \theta)$ was associated to it. In the present paper an algorithm for obtaining the probability density function $-p(x, \theta)$ (p.d.f.) of the so-called Observed Wind Roses (OWR) - the rose from the Climatic reference book of Bulgaria (1982), and then to calculate the so-called Transformed Wind Rose in different compass directions (usually more) is presented.

Determination of the parameter θ of the function $p(x, \theta)$

Variant 1

The function $p(x, \boldsymbol{\theta})$ - probability density function - in this variant has the form:

$$
\begin{equation*}
p\left(x, a_{i}, b_{i}\right)=a_{i}+b_{i} x \tag{1}
\end{equation*}
$$

in the intervals $\left(x_{i}, x_{i+1}\right]$. Between every two compass directions there is only one straight line. There are $2 n$ unknowns: a_{i} - the y-intercept, and b_{i} - the slope of the line, if the compass directions are n. A method for determining the unknowns is given below:

Replacing $N\left(x_{i}\right)$ and $N\left(x_{1}\right)$ in the integrals of formulas (1) and (2) in Gromkova at al, 20...., by the empirical estimates \hat{N}_{i} and \hat{N}_{1}, and substituting x_{i} by $x_{i}=2(i-1) t$ in the limits of the integrals, the following expressions are obtained:

$$
\begin{gathered}
\hat{N}_{i}=\int_{(2 i-3) t}^{2(i-1) t}\left(a_{i-1}+b_{i-1} z\right) d z+\int_{2(i-1) t}^{(2 i-1) t}\left(a_{i}+b_{i} z\right) d z, i=2,3, \ldots, n, \\
\hat{N}_{1}=\int_{(2 n-1) t}^{2 n t}\left(a_{n}+b_{n} z\right) d z+\int_{0}^{t}\left(a_{1}+b_{1} z\right) d z \quad i=1\left(x_{1}=0\right) .
\end{gathered}
$$

After integration and some transformations the following relations are reached:

$$
\begin{gather*}
M_{i}=d_{i-1}+d_{i}+(4 i-5) b_{i-1}+(4 i-3) b_{i}, \quad i=2,3, \ldots, n \tag{2}\\
M_{1}=d_{n}+d_{1}+(4 n-1) b_{n}+b_{1}, \quad i=1 \tag{3}
\end{gather*}
$$

where $M_{i}=2 \hat{N}_{i} / t^{2}$ and $d_{i}=2 a_{i} / t$.
The condition the strength lines defined with (1) to have equal values on both sides of the compass direction points (Gromkova et al, 20....) is:

$$
\begin{gather*}
d_{i}+4(i-1) b_{i}=d_{i-1}+4(i-1) b_{i-1}, \quad i=2,3, \ldots, n \tag{4}\\
d_{1}=4 n b_{n}+d_{n}, \quad i=1 \tag{5}
\end{gather*}
$$

The equations (2), (3), (4) and (5) represent a system of $2 n$ linear equations in $2 n$ unknowns. The solution of the system in brief follows:

The differences $M_{i+1}-M_{i}$ and the sums $d_{i+1}+d_{i}$ are made:

$$
\begin{gather*}
M_{i+1}-M_{i}=d_{i+1}-d_{i-1}-(4 i-5) b_{i-1}+2 b_{i}+(4 i+1) b_{i+1}, \quad i=2,3, \ldots, n-1,(6) \\
M_{2}-M_{1}=d_{2}-d_{n}-(4 n-1) b_{n}+2 b_{1}+5 b_{2}, \quad i=1, \tag{7}\\
d_{i+1}-d_{i-1}=4(i-1) b_{i-1}+4 b_{i}-4 i b_{i+1}, \quad i=2,3, \ldots, n-1 \tag{8}\\
d_{2}-d_{n}=4 b_{n}+4 b_{1}-4 b_{i+1}, \quad i=1 \tag{9}
\end{gather*}
$$

The differences from (6) and (7) are replaced in the differences (8) and (9). A system of ($n-1$) equations in n unknowns in respect of b_{i} is obtained:

$$
\begin{gather*}
M_{i+1}-M_{i}=b_{i-1}+6 b_{i}+b_{i+1}, \quad i=2,3, \ldots, n-1 \tag{10}\\
M_{2}-M_{1}=b_{n}+6 b_{1}+b_{2}, \quad i=1 \tag{11}
\end{gather*}
$$

Summarizing the equations (4) and (5) for i from 1 to n, the following expression is reached:

$$
\sum_{i=1}^{n} b_{i}=0
$$

Adding the last equality to (10) and (11) a system of n equations in n unknowns in respect of b_{i} is obtained.

The system is presented in a matrix form as $\boldsymbol{A} . \boldsymbol{B}=\boldsymbol{F}$, where \boldsymbol{F} is a column-vector with components $f_{i}=M_{i+1}-M_{i}$, for $i=1,2, \ldots, n-1$, and $f_{n}=0, \boldsymbol{B}$ is a column-vector with components the unknowns b_{i}, and \boldsymbol{A} is a quadratic matrix of order n of the system coefficients. The system can be written as follows too:

$$
\left(\begin{array}{ccccccccc}
u & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
1 & u & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 1 & u & 1 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 1 & u & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & u & 1 \\
1 & 1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1
\end{array}\right) \times\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\cdots \\
b_{n-2} \\
b_{n-1} \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\cdots \\
f_{n-2} \\
f_{n-1} \\
0
\end{array}\right)
$$

The diagonal elements, marked with u, are equal to 6 . For obtaining the inverse matrix \boldsymbol{A}^{-1} the matrix \boldsymbol{A} is divided in 4 blocks:

$$
A=\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right)
$$

where α_{11} is a quasidiagonal matrix (Jacobian) of order $n-1$ with main diagonal elements equal to 6 and with adjacent off-diagonal elements equal to $1, \alpha_{12}$ is a column-vector with components $\left(\alpha_{12}\right)_{1}=1$ and $\left(\alpha_{12}\right)_{n-1}=1$, and remaining elements equal to $0, \alpha_{21}$ is a rowvector with components equal to 1 , and α_{22} is a scalar equal to 1 , too.

The inverse matrix is represented in blocks, too (Demidovitch and Maron, 1960):

$$
\boldsymbol{A}^{-1}=\binom{\beta_{11} \beta_{12}}{\beta_{21} \beta_{22}}
$$

where:

$$
\begin{align*}
& \beta_{11}=\alpha_{11}^{-1}-\beta_{12} \alpha_{21} \alpha_{11}^{-1} \tag{12}\\
& \beta_{12}=\alpha_{11}^{-1} \alpha_{12}\left(\alpha_{22}-\alpha_{21} \alpha_{11}^{-1} \alpha_{12}\right)^{-1} \tag{13}\\
& \beta_{21}=-\beta_{22} \alpha_{21} \alpha_{11}^{-1} \tag{14}\\
& \beta_{22}=\left(\alpha_{22}-\alpha_{21} \alpha_{11}^{-1} \alpha_{12}\right)^{-1} . \tag{15}
\end{align*}
$$

In the expressions above $\alpha_{11}{ }^{-1}$ is the inverse matrix of α_{11}. As the matrix α_{11} is symmetrical, the inverse matrix $\alpha_{11}{ }^{-1}$ is symmetrical, too. Let's denote the elements of $\alpha_{11}{ }^{-1}$ by $c_{i j}(i, j=1,2, \ldots, n-1)$. It is possible to prove (see Appendix), that the analytical expression of $c_{i j}$ is represented by the formula:

$$
\begin{equation*}
c_{i j}=-\frac{\left(Q^{i}-P^{i}\right)\left(Q^{n-j}-P^{n-j}\right)}{(Q-P)\left(Q^{n}-P^{n}\right)}, \quad i \leq j \leq n-1, \tag{16}
\end{equation*}
$$

where

$$
P=\left(\sqrt{u^{2}-4}-u\right) / 2 \text { and } Q=-\left(\sqrt{u^{2}-4}+u\right) / 2
$$

Using the formula for $c_{i j}$ it can be demonstrated that the elements of the matrices (blocks) $-\left(\beta_{11}\right)_{i j},\left(\beta_{12}\right)_{i},\left(\beta_{21}\right)_{j}$ and $\left(\beta_{22}\right)$ have the form:

$$
\begin{array}{ll}
\left(\beta_{11}\right)_{i j}=\frac{Q\left(Q^{j}-1\right)\left(Q^{i-j}-Q^{n-i}\right)}{\left(Q^{2}-1\right)\left(Q^{n}-1\right)}, & j<i \leq n-1, \\
\left(\beta_{11}\right)_{i j}=\frac{Q\left(Q^{n-j}-1\right)\left(Q^{j-i}-Q^{i}\right)}{\left(Q^{2}-1\right)\left(Q^{n}-1\right)}, & i \leq j \leq n-1, \\
\left(\beta_{12}\right)_{i}=\frac{(Q-1)\left(Q^{n-i}+Q^{i}\right)}{(Q+1)\left(Q^{n}-1\right)}, & i \leq n-1, \\
\left(\beta_{21}\right)_{j}=\frac{Q\left(Q^{n-j}-1\right)\left(Q^{j}-1\right)}{\left(Q^{2}-1\right)\left(Q^{n}-1\right)}, & j \leq n-1, \\
\left(\beta_{22}\right)=\frac{(Q-1)\left(Q^{n}+1\right)}{(Q+1)\left(Q^{n}-1\right)} .
\end{array}
$$

The elements of the inverse matrix \boldsymbol{A}^{-1} can be determined by using the formulas of the blocks $\beta_{11}, \beta_{12}, \beta_{21}$ and β_{22} - the expressions (12), (13), (14) and (15). Finally, after the multiplication $\boldsymbol{B}=\boldsymbol{F} . \boldsymbol{A}^{-1}$ the strength line coefficients b_{i} are determined according to the next expression:

$$
\begin{aligned}
b_{i} & =\frac{Q}{\left(Q^{2}-1\right)\left(Q^{n}-1\right)} \times \\
& {\left[\sum_{j=1}^{i-1}\left(Q^{j}-1\right)\left(Q^{i-j}-Q^{n-i}\right) f_{j}+\sum_{j=i}^{n}\left(Q^{n-j}-1\right)\left(Q^{j-i}-Q^{i}\right) f_{j}\right], }
\end{aligned}
$$

To obtain the unknown d_{i} (respectively a_{i}), d_{n} is defined by the expression (5), then it is substituted in (3) and d_{1} is represented by:

$$
d_{1}=\left(M_{1}+b_{n}-b_{1}\right) / 2
$$

The remaining unknowns d_{i} for $i=2, \ldots, n$ are defined recursively by the formula (8):

$$
d_{i}=d_{i-1}+4(i-1)\left(b_{i-1}-b_{i}\right)
$$

The coefficients a_{i} are obtained by the following expression:

$$
a_{i}=t d_{i} / 2
$$

Variant 2

The analytical expression of the function $p(x, a)$ in this case has the form:

$$
p\left(x, a_{i}\right)=a_{i}
$$

defined in the intervals $\left(x_{i}-t, x_{i}+t\right]$, for $i=2,3, \ldots, n$, and in the intervals (360-t,360] and $(0, t]$ for $i=1$, i.e. for $x_{1}=0$. The unknowns are n for n directions.

The determination of these constants is as follows:

$$
a_{i}=\hat{N}_{i} / 2 t .
$$

Appendix

Let $c_{i j}$ are the elements of the inverse matrix $\alpha_{11}{ }^{-1}$. Then the following matrix equality is satisfied:

$$
\left(\begin{array}{ccccccc}
c_{11} & c_{12} & c_{13} & \cdots & c_{1, n-3} & c_{1, n-2} & c_{1, n-1} \\
c_{21} & c_{22} & c_{23} & \cdots & c_{2, n-3} & c_{2, n-2} & c_{2, n-1} \\
c_{31} & c_{32} & c_{33} & \cdots & c_{3, n-3} & c_{3, n-2} & c_{3, n-1} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
c_{n-3,1} & c_{n-3,2} & c_{n-3,3} & \cdots & c_{n-3, n-3} & c_{n-3, n-2} & c_{n-3, n-1} \\
c_{n-2,1} & c_{n-2,2} & c_{n-2,3} & \cdots & c_{n-2, n-3} & c_{n-2, n-2} & c_{n-2, n-1} \\
c_{n-1,1} & c_{n-1,2} & c_{n-1,3} & \cdots & c_{n-1, n-3} & c_{n-1, n-2} & c_{n-1, n-1}
\end{array}\right) \times\left(\begin{array}{ccccccc}
u & 1 & 0 & \cdots & 0 & 0 & 0 \\
1 & u & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & u & \cdots & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & u & 1 & 0 \\
0 & 0 & 0 & \cdots & 1 & u & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & u
\end{array}\right)=\boldsymbol{E},
$$

where \boldsymbol{E} is the unit matrix. After multiplication of the i-th row of $\alpha_{11}{ }^{-1}$ by all columns of α_{11}, the following equations are obtained:

$$
\begin{align*}
& u c_{i 1}+c_{i 2}=0, \\
& c_{i 1}+u c_{i 2}+c_{i 3}=0, \\
& \ldots \tag{17}\\
& c_{i i-1}+u c_{i i}+c_{i, i+1}=1, \\
& c_{i i}+u c_{i, i+1}+c_{i, i+2}=0, \\
& \ldots \\
& c_{i, n-3}+u c_{i, n-2}+c_{i, n-1}=0, \tag{18}\\
& c_{i, n-3}+u c_{i, n-2}+c_{i, n-1}=0, \\
& c_{i, n-2}+u c_{i, n-1}=0
\end{align*}
$$

It is obvious that for $i=2,3, \ldots, n-3, j>i, c_{i j}$ satisfies the recurrence relation:

$$
\begin{equation*}
c_{i, j-1}+u c_{i j}+c_{i, j+1}=0 \tag{19}
\end{equation*}
$$

To obtain the common term of this recursion, its characteristic equation is used (Markushevitch, 1975):

$$
q^{2}+u q+q=0
$$

The roots of this equation, denoted by P and Q, are:

$$
P=\left(\sqrt{u^{2}-4}-u\right) / 2 \text { and } Q=-\left(\sqrt{u^{2}-4}+u\right) / 2 .
$$

They are real when $u \geq 2$, i.e. in the discussed case, because $u=6$: $Q=-(\sqrt{8}+3) \approx-5.8284$. The common term of the relation (19) is presented by the expression (Markushevitch, 1975):

$$
\begin{equation*}
c_{i j}=G_{i} P^{j-i}+H_{i} Q^{j-i}, \quad i=2,3, \ldots, \quad n-3, j>i . \tag{20}
\end{equation*}
$$

The coefficients G_{i} and H_{i} are different for each i, i.e. for every row.
The first two terms of the above expression - for $j=i$ and $j=i+1$ - have the form:

$$
\begin{align*}
& c_{i i}=G_{i}+H_{i} \tag{21}\\
& c_{i, i+1}=G_{i} P+H_{i} Q \tag{22}
\end{align*}
$$

and the last two - for $j=n-2$ and $j=n-1$:

$$
\begin{align*}
& c_{i, n-2}=G_{i} P^{n-2-i}+H_{i} Q^{n-2-i} \tag{23}\\
& c_{i, n-1}=G_{i} P^{n-1-i}+H_{i} Q^{n-1-i} \tag{24}
\end{align*}
$$

To determine the unknown coefficients G_{i} and H_{i} the equalities (17), written in the form:

$$
\begin{equation*}
u c_{i i}+c_{i, i+1}=D_{i i-1} \tag{25}
\end{equation*}
$$

and the expression (18), that are not terms of the recurrence relation (19), are used too. $D_{i, i-1}$ in the above expression according (17) is $D_{i, i-1}=1-c_{i, i-1}$. As the matrix $\alpha_{11}{ }^{-1}$ is symmetric $c_{i, i-1}=c_{i-1, i}$. However the element $c_{i-1, i}$ is determined from the recurrence relation by multiplication of the $i-1$-th row and therefore $D_{i, i-1}$ is determined too.

It is known that $u=-(P+Q)$ and $P Q=1$ for the roots of the quadratic equation. Replacing (21) and (22) in (25), (23) and (24) in (18) and u in (25) and (18) and after some processing the following system of equations for G_{i} and H_{i} is obtained:

$$
\begin{gathered}
G_{i} Q+H_{i} P=-D_{i, i-1}, \\
G_{i} P^{n-i}+H_{i} Q^{n-i}=0 .
\end{gathered}
$$

The solution of the system in respect to G_{i} and H_{i} is:

$$
\begin{align*}
G_{i} & =-\frac{Q^{n-i}}{Q^{n+1-i}-P^{n+1-i}} D_{i, i-1} \tag{26}\\
H_{i} & =\frac{P^{n-i}}{Q^{n+1-i}-P^{n+1-i}} D_{i, i-1} . \tag{27}
\end{align*}
$$

Determining $D_{i, i-1}$, for $i=2,3, \ldots$ and s.o., it can be shown that

$$
D_{i, i-1}=\frac{\left(Q^{i}-P^{i}\right)\left(Q^{n+1-i}-P^{n+1-i}\right)}{(Q-P)\left(Q^{n}-P^{n}\right)} .
$$

After replacing $D_{i, i-1}$ in (26) and (27) and then G_{i} and H_{i} in (26), the expression (16) in the main text - the formula for the coefficients $c_{i j}$ - is reached.

References

Climatic reference book of Bulgaria, Part 4, WIND, 1982.
Demidovitch, B. P., and I. A. Maron, 1960. Bases of the Numerical Mathematics, 659pp., Gos. Izd. Phys.-Mat. Lit., Moscow (in Russian).
Gromkova, N., and I. Butchvarov., 20... Applying a model for transforming an climatic wind rose defined in " n " to a " m " compass directions rose for the air pollution assessment of the point source, Bulg. Geoph. Journal
Markushevitch, A. I., 1975. Recurrence Relations, 47pp., "Nauka", Moscow (in Russian).

Алгоритъм за преобразуване на розата на вятъра чрез увеличаване или намаляване на румбовете

И. Бъчваров, Н. Громкова

Резюме.. Необходимостта да се преобразува стандартната за България климатична 8румбова роза на вятъра (наречена тук Наблюдателна Роза на Вятъра (НРB)) възникна във връзка с определянето на концентрацията на климатичното (средногодишното) замърсяване на въздуха от точков източник, което е основна цел на оценките на въздействие върху околната среда (т.н. ОВОС). В предната публикация (Gromkova at al.) бяха представени редица теоретични примери за преимуществата на разработения алгоритъм за трансформиране на розата на вятъра при получаване на полето на приземните концентрации, в сравнение с използването на 8-румбовата роза, дадена в климатичния справочник. Тук е представен математическия апарат, използуван за получаване на рози с различен брой румбове.

