L. Krastanov G. Miloshev

Theoretical Bases of Phase Transitions of Water in the Atmosphere

Budapest, 1980

CONTENTS

Preface		9
Introdu	ction	13
Chapter	I. THERMODYNAMICS OF THE HOMOGENEOUS PHASE FORMATION Thermodynamic Potential and Conditions for Stabili-	17
	ty of a New Phase	17
	stances	18
	persaturated Phase	21 23
Chapter	II. THERMODYNAMICS OF THE HETEROGENEOUS PHASE FORMA-	25
	TION	45
	Formation of a New Phase	25
	Insoluble Nuclei	35
	Insoluble Nuclei	38 42
	Effect of the Substrate Roughness on the Formation of Liquid Embryos	45
Chapter	III. KINETICS OF THE HETEROGENEOUS FORMATION OF LIQUID EMBRYOS	5 1
	BECKER-DÖRING Method of Heterogeneous Condensa-	5 1
	Kinetics of the Formation of Liquid Embryos on In-	
	completely Wettable Insoluble Nuclei Generalization of the Existing Cases	5 5 6 1
Chapter	IV. PHASE TRANSITIONS DURING ADSORPTION OF EXTRA- NEOUS SUBSTANCES	65

	Formation of Liquid Embryos with Adsorption of	
	Foreign Substances. Generalizations	65
	On the Possibility of Facilitating the Condensa-	
	tion Process by Means of Adsorption	69
	On the Possibility of Activation and Passivation	
	of the Condensation Nuclei	72
	A Combined Case of Facilitation of the Condensa-	
	tion Process and Activation or Passivation of	
	the Condensation Nuclei	74
	Sizes of the Most Active Nuclei during Adsorption	76
	Kinetics of Embryo Formation in the Presence of	
	Adsorption	82
Chapter	v. CRYSTALLIZATION OF SUPERCOOLED WATER DROPS	8 7
	Type of the New Phase Formed during Condensation	
	below 0 °C (OSTWALD's Step-Rule). Formation of	
	the Ice Phase as a By-Product of the Heterogen-	
	eous Freezing of Water Drops	8 7
	THOMSON-GIBBS' Modified Equation for the Equilib-	
	rium of a Crystal Embryo in a Small Drop	93
	Thermodynamics of the Heterogeneous Formation of	COL March
	Crystal Embryos from a Supercooled Melt	97
	Crystallization Activity of Completely Wettable	
	Nuclei	102
	Freezing of Small-Sized Water Drops with Incomp-	101
	lete Wetting of the Ice Embryo	104
Chapter	VI. ESSENTIAL ELEMENTS OF THE MOLECULAR KINETICS	
	THEORY OF STRANSKI AND KAISCHEW	115
	Method of the Mean Work of Separation. THOMSON-	
	GIBBS Modified Equation for Crystals	115
	Work of Formation of Crystal Embryos	120
	Equilibrium Form of the Crystals. WULFF's Theorem.	
	Determination of the Equilibrium Form by Means of	
	the Mean Work of Separation. Generalization of	
	GIBBS-WULFF's Rule for Crystals on Substrates	122
	Effect of the Adsorption of Extraneous Substances	
	es on the Equilibrium Forms and on the Work of	
	Formation of Crystal Embryos	127
Chapter	VII. PHYSICS OF THE ICE CRYSTAL	133
	Crystal Structure of Ice and Forces Acting between	
	Its Building Elements	133

	Equilibrium Form of the Ice Crystal	13 13
	Formation of Ice Embryos on Their Own Crystal. Activity of the Equilibrium Faces of Ice	14
Chapter	VIII. CRYSTAL EMBRYO FORMATION ON ISOMORPHIC NUC- LEI UNDER NATURAL CONDITIONS AND IN THE PRESENCE	
	OF ADSORPTION	147
	on Incompletely Wettable Condensation Nuclei Effect of Adsorption upon the Formation of Crystal	147
	Embryos on Nuclei	153
	ices on Isomorphic Nuclei	157
	Embryos with Tetragonal Lattices on Isomorphic	160
Chapter	IX. KINETICS OF CRYSTAL EMBRYO FORMATION ON IN- COMPLETELY WETTABLE ISOMORPHIC NUCLEI	163
Chapter	x. ORIENTED CRYSTALLIZATION (Epitaxy) Principle of the Orientational and Dimensional	175
	Correspondence. Theory of Oriented Crystallization Oriented Crystallization (Epitaxy) on Isomorphic	175
	Nuclei	181
	Oriented Crystallization	183
Referen	c e s	185