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Abstract. The problem of applying the Boussinesq approxiomatd the convection

in the Earth's core is discussed. It is shown thatBoussinesq approximation ne-
glects the essential part of the heat transpdttarcore, the adiabatic heat flux, which
does not vanish in the incompressible limit. ltoalseglects the cooling due to the
work of the Archimedean force. As a result, the &fvenergy conservation reduces to
the heat conservation only. Thus, the Boussinesgpajppation is inadequate for de-
scribing of the Earth core convection. Therefore propose here a new, Incom-
pressible approach, which takes all these effettsdaccount. In the frame of this new
approach we estimate the "natural” units for thetEacore convection. On this base
we redefine the value of the Rayleigh number whiéchidely discussed in literature.

Key words: anelastic convection, Boussinesq approximatiorpdgeamo, com-
pressibility.

Introduction

Generation of Earth's magnetic field is energdiicalipported by the convection
in the Earth's liquid core. That is why the adequé#scribing of the convection is so im-
portant for the geodynamo.

Most of the computer simulations in this area (@ge Fearn and Morrison (2001)
Sakuraba, and Kono (1999) Cupal et al (2004)), veameied out in the Boussinesq ap-
proximation. Even the "numerical dynamo benchma@itiristensen et al (2001), works on
this base. Therefore, the question whether the Soeisq approximation is adequate for
describing of the Earth's core convection is vegpificant for the geodynamo problem.
The present work is devoted to answer this question

The main problem of theoretical physics is undeditag the sense of the physical
phenomena. This understanding is usually impossiltteout simplification of the model.
That is why, the neglecting the compressibilitytloé Earth’s core in the Boussinesq ap-
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A.Anufriev: Approximation of incompressible fluidthe geodynamo convection

proximation, is an useful step for understanding ¢bnvection in the core, in spite of the
relatively big density differenceXp/p~ 20%) between its bottomy =r;, and top,r =r,,

boundaries. For the first and for the second oalglsteviations ICB (Inner Core Boundary)
and CMB (Core Mantle Boundary) are commonly used.
The reference state in the Earth's core is addptbd hydrostatic, well mixed and,

consequently, adiabatiq_'.(r):T(rl)(ﬁ(r (@) ) . Respectively, the temperature difference

AT between both boundaries also vanishes in the iiavismit Az — 0. Therefore, we
accept both values to be constant in this inconsiiskeslimit: =7, and T=To.

We will see in the next section that in spiteA@f— 0, the adiabatic heat flux
H = 4np,r(dT/dr) does not vanish in the incompressible limit. Thiexealso one more
value, the gravitational acceleratien= g,(r/ r,) which does not vanish in this limit. It rises

only 2.8 times between the two boundaries and thesBinesq approximation takes this
change into consideration. However, the adiabagiat lux which enhances 23 times is
neglected in BA! May be its value is too small othken into account, in spite of being 23
times greater? On the opposite, the adiabatic fheats equal to approximately 2/3 of the

whole heat flux leaving the core on CMB. Neglectiwgh a large effect is a besetting sin
of the Boussinesq approximation. Therefore, heregmgpose a new, Incompressible Ap-
proach, which takes the adiabatic heat flux intwoaat.

Incompressible reference state

Our aim here is not to study the whole referenatestf the Earth’s core, but only
to watch its behavior in the incompressible limip — 0. Our estimations below are based

on the Preliminary Reference Earth Model (PREMPlyewonski and Anderson (1981).
The equations which govern the gravitational aceéileng , temperature , and
density » for our adiabatic reference state are
] iﬂ_ 1a0 dp

, -
299 _ 4rcy, ~108  d__1ag (1.1,2,3)
re dr T dr r<c, 7 Cp

Here G is the gravitational constaniy = —p(dp/ 9T), is the coefficient of thermal expan-
sion, v is the Gruneisen parameter anglis the specific heat at constant pressure. The
values of these and other parameters used indpisrare given in Table 1.

Table 1

G 6.67x 10 ' m3kg 1s 2 o 1.4x10°K ! Cp 860nfs 2K 1
n 1.22x 16m r2 3.48x 16m d 2.26x 16m

K 5x10°m?s? n 2m?s? Kt 2m’st

Po 1.1x 10kgm3 To 4650K v 1.35
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Here d =r, —r, is the thickness of the liquid core spherical khel is the magnetic diffu-
sivity, « is the thermal diffusivity and:; is its turbulent value. Values 0/_50 and T, are

defined by relations: p, = (p\cs + pewe) /2 @nd  To=(Tice + Teme) /2 . We take these
parameters from Roberts and Glatzmaier’s (2000kwor

Crude estimation based on (1.2,3) gives the difileeeof temperature and density
between ICB and CMB:

AT ~ToD,  Ap~p,D, wherep=9:%4 _ 57 and= Tz’ (1.4)
C
p
This estimate shows that and p change slowly £ D ) withr . At the same time
the variableg(r) changes approximately three times between ICBGW®&. So the vari-

ables of RS can be divided into two groups. Thet fine includes parameters suchTas
and p which change slowly between; and r,. The second (“fast”) group consists of

parameters such as eg, which change essentially between these two baiesla
The solution of the equations (1.1-3) can be seatdly iterations. In the leading
approximation we will neglect the change of theotl parameters:p = const(= ;O)and

T = const(= ) and will take into consideration the variationté “fast” values only. In
the next approximation we will use the fast appmation values in order to obtain the
small variation of the “slow” variables. This pr@secan be repeated for the next approxi-
mations, but further we will be interested mainiythe leading approximation which could
be called the incompressible one.

The fast variables are given by the right handssimfethe equations (1.1-4). They

areg(r),D(r),dT/d r, and dp/dr. An additional extra-fast variable, the conductadia-
batic heat flux

- dT
_ 2
H =4mr pOHCpE

has to be included in this group as well. Thendihect integration of (1.1-3) gives:

— T T - D 3
g=g,—, D= DOL, ar _To DOL , dp P Do T ’ }[zr_g_[O, (1.6)
r o Gar ro Y'o r

wherer, = (r, +r,)/ 2= 2.35¢< 16m and

-7.22ms?, :% = 0.276, #, = 4mrpyro g o= L.BTW (1.7)
p
The results of our Incompressible reference st&®&)(are compared in Table 2
with the values used by Roberts and Glatzmaier@R(RG).

— 4Gy
g: [0) [o]
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Table 2

a(n) 9(ry) 7#(r) #(r)
IRS 3.8ms™2 10.7ms? 0.25TW 5.8TW
RG 4.4ms 2 10.7ms 2 0.3TW 5.4TW

This Table shows that incompressibility of the refece state does not disturb it
essentially. For any variabke, let us introduce a valueA=AA/ A'y), where AA=

A(r,) — A(r) . Then it follows from (1.6) that

3
D(E):3=o.9e, D¢ )= H%] -

3
Li] -3.1 (1.8)
rO

2'0

Equations for the “slow” variables can be obtaibgdsubstitution of the “incom-
pressible’D into (1.2,3):

d1® T, . dp®  py Dy T

= —, .
dr r, I, dr o 716

We are interested not in the solutions of theseatigus but only in their differ-
ences on both boundaries:

- = _ = r22 7r12 = d = - - D,
AT=T(r)—T(r,) =ToD, =ToD,—~ ToD,, Ap=p,—2.
o o il
It follows from here that
pM=2T-p 9 026 Dp)=22_Dd_DM_ 4,9 (1.9)
To o Po YV To 7

ParameterD, characterizes the compressibility of the liquidti®e Earth’'s core. In the
incompressible limitd, — 0 the differences of the temperature and densityéxt the top
and the bottom boundaries vanish. However the ™famtametersg(r) and #(r) are unaf-
fected by this limit and respectively cannot beleetgd, if parameter $d$ does not change.
In fact, neglecting the adiabatic heat flux leamslisturbance of the law of the energy con-
servation: the energy flux enhances without ensemyces.

That is why theommonly used Boussinesq approximation is incorrect
in application to the Earth’s core: it violates the energy conservation law This ap-
proximation could be correct if the change of tlogahatic heat flux is negligible i.e. if
D(#) < 1. As (1.8) shows, the above is possible &d/2r, <1, say d=(2/3)r, /10
~150km. In this case we must neglect the changes notiartlye “slow” but in the “fast”
parameters as well. This means tigdh the correct Boussinesq approximation does not
depend orr .
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The incompressible approach to the Earth’s core carection

Anufriev et al (2005) proposed an anelastic ligagbroximation for the Earth’s
core convection. Their momentum heat transportiaddction equations can be written in
a form:

ov VxBxB FY

N VvV = v +1,9(Nad) + ~————2QxV+=——, V.pfV=0 (21,2
ot p(r) ()it p(r)
oY — g(r)a 09| H
9 vy ==ty VI + kVT N, — iy ——|+—, 2.3
o TV 0 p(0)r VI + KVT] — . N, “ar]%p (2.3)
oB )
E:VX[VXB]-FT]V B, V-B=0, (24,5)

whereF" is the viscous force.

The Earth’s core convection is driven by the hedtacted at ICB due to solidifi-
cation of iron on the inner core surface. The seapmodel of this process is the uniform
super-adiabatic heat fluQ,(r) prescribed at ICB. To complete the formulationtioé

problem we also assume that the super-adiabatjoieture is uniform at CMB:

99(n) _ Qs
ECAU VAN - S 9y 0 2.6,7
o ke Pe (2.6.7)

where k; =EocpnT is the thermal conductivity.

As usual, we will use the no-slip boundary conditidor the flow velocity and
correspondent conditions for the magnetic fielb@h boundaries. Further we will neglect
the compressibility and use the Incompressiblereafee state (IRS) (1.6,7) of the Earth’s
core. Then the momentum (2.1), the continuity (2:2) the heat transport (2.3) equations
take their incompressible form:

ov VxBxB

“— 4 (V-V)V = v—+1 9N + Y2222 _20%V 41, VA, V-V = 0, (2.10,11)
ot Po Potlo
LR RS S 0 VL (2.12)
ot Cp Cp

The last of them differs from the heat transpayiagion of the Boussinesq ap-
proximation by two additional terms. The first orR&2T(r) describes the heat loss due to
supporting the adiabatic heat flux. We will referit as the adiabatic cooling. The other
new term, (D(r)/d)¥V, , describes the cooling due to the work of the hixreedean force
1r§(r)m9(r) in the momentum equation. We will call it the Amtiedean cooling. The

fourth term in rhs of (2.3) describes the coolingedo the conversion of the internal en-
ergy into the kinetic energy of the non-resolvedbtilent eddies. As this term is small, we
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neglect it in our approximation.
It follows from (1.6) that the adiabatic heat flisxlinear inr and thus the adia-
batic cooling is uniform:

X Vo RVT(r) = ~ 3Dy 2
o r

[o]

KVT(r) = -1,k DoTo

o]

Induction equation (2.4) is a consequence of thewdd and Ohm equations

%—?:VxE, whereE=1 —VxB and i,j = VxB (2.13)
g

Mltiplying (2.7) by p,V , (2.9) byc,p, and (2.13) byB/, we obtain the energy
balance for the kinetics* = p,v2/2,
o
ot
for the internal,e” = ¢ p.¥ ,

= V[V + PV + p N X VXV ] 4 p,gMad +V § B —p J VA ]2 (2.14)

) _ —
9 _ B v VL —PoCp (HTV~’I9 +1,/@'Z—:—) + p,gadV,, (2.15)

ot

and for the magnetic:™ = p B2/ 2, ,
0™ __v. BxE
ot Ho

energies.
Summering (2.14), (2.15) and (2.16) we obtaingtyeation for the whole energy
balance:

%[ek e 4 M=Vl 4 pH—nug2— p A VxV] 2 (2.17)

—V-jxB —nug? E =3uj -V B (2.16)

where
BxE

H

| =V[ek+ P+ + V. —poN KV V] = pc, (ki V-0 1 rﬁg—r) (2.18)

(o]

is the energy flux.

Further we will assume that the internal heatinglisent and as a result the whole
energy conserves. This means that changing thgenmeany volume has to be due only to
the flux across its walls. Then it follows from 12) that in the absence of radioactive
heating, the heating in the volume is defined dmjythe Ohmic and the viscous dissipa-
tions:

poH = ntig)? + p AV xV12 (2.19)

The viscous dissipation is small and will be neldeverywhere.
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Let us integrate (2.17) over the whole liquid cdreen we obtain:
%[Ek +E + EM =908 — A(n), (2.20)

where

F)

Ek:47rf< hr2dr, E’ f Irodr, EM= 4rf rZar (2.21)

n

means the whole kinetic, internal and magneticgasrand

I(r)=4ar?(1.¢)). (2.22)
means the whole energy flux. The angle brackets imeran averaging over whole sphere:
2
1 .
<A>(r)_E[[A(r,ﬁ,@smﬂdﬁddx @)2

The normal component of the flow velocity vanisloesthe solid boundaries. So
the energy flux (2.18) averaging over sphere takiEsm:

>_1r~<B>< E>(rl,2)7—

(1, (m2)= z/lr~<V><[V><V]>(rl’2)f,zocp%<n-r19+l,n'_l'>(rlv;). (2.24)

(o]

The whole energye® + E” + E™ is limited. So the Ihs of (2.20) vanishes under av
eraging it over a long time interval. Then this aiipn takes the form of balance of the
energy fluxes on ICB and CMB(r,) — 7(r;) = 0. The first and the second terms in (2.24)
describe the fluxes of the kinetic and magnetiagies. They change the kinetic energies

of the mantle and the inner core and the magnagcgy into the whole space. These terms
also vanish under averaging over the long timeniale Then the energy flux balance con-
verts into the balance of the adiabatic and sugibatic heat fluxes which can be written

in a form
(V) (r) BICN() aT(r aT(r
ko2 <8>r D 2 <a>r D _ |2 ;2) o2 8r(l) _

(2.25)

Eq. (2.25) shows that the loss of the superadiabbaat flux between ICB and
CMB equals the adiabatic cooling of the whole core

29T (1) _r 20T(nr) _
or !

Qu = 9(5) — (1) = 4k|r; P o d }

T
74nkr—r—D0 24,41

o'o0

(2.26)

Here we take (2.8) and (2.9) into account.

The value of the superadiabatic temperature islsifla¢ superadiabatic heat flux
on ICB can be increased if we assume that a thnpéeature layer arises there with thick-
ness
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r V,r
| ~—2—, where Pe =L¢

JpPe oy (2.28)

Then the jump of the superadiabatic temperaturesadhe layer can be estimated
from (2.25) as

g, = Qsa(zrl) 1 pe 12 Q1) _ (2.29)
4Ky 471, %Ky
We assume that this jump is of order of the typiedlie of ¥ . Estimation for the
Archimedean flow velocity can be obtained diredigm (2.10): VA:(EOIZQ)m?l. We
assume further that this velocity is of order &f tipical flow velocityV,. Then we obtain
an estimate fow, :

9, =1 ZM _ pe By (2.30)
goa DOCP

Equalizing two estimates (2.29) and (2.30) fprwe obtain an equation foPe.
Its solution

4/3 2/3
Pe= K M
’%T 87(er2’{po
can also be presented in the form:
4/3
Pe= Pe @3 where Peg=|--| RE"®, AQa:QL(rl) , and (2.31)
KT Q.
¢,D2To _ g,aT QAT
Ra=p20 [0 g 950Tol hp 8002Th o 4 g 145 (2.32)
20k ANk Xk

is the well known Rayleigh number. Paramefieis defined by the expression

r-d

fo

2
2 +-241=115
0] M

At the threshold of convection in the whole liquidcore the superadiabatic heat
flux on CMB is absent. So it follows from (2.25athQ,,(r) = Q,. RespectivelyPe, is the

critical value of Pe for the case when convection is situated in thelgvhore.
Now we can estimate the values 6f= P20/ D,c) :

_To

- Rd./S

1/3
A DR Qu (2.33)

and V; = (k1 / 1,)Pe

Bulgarian Geophysical Journal, 2007, Vol. 33 27



A.Anufriev: Approximation of incompressible fluidthe geodynamo convection

1/3
v, =2 R Q&3 (2.34)

To

R

ket

In fact, the momentum equation (2.10) presentsbtiance of the pressure, the
Archimedean and Lorentz forces. The number of degof freedom of the pressure force
is smaller than of the other two. That is why wsuase that in some locations at least, this
balance reduces only to the balance of the Arch#mednd Lorentz forces
VxBxB B’

Ho Holp

(2.35)

Po0(r)ad) ~

Further we will assume that the typical space sofithe magnetic field distribu-
tion 1, is the diffusive scalé defined by (2.28). Then this balance allows toneste the

typical value of the magnetic intensity and thec#ical current); :

1/3
B, = /2, itto i] Ra/° Qe (2.36)
= 1/2
ZQ . ~
3= /Mfr’of i Rad2Q2 (2.37)
0’0

It isB, appropriate to compare our (IA) amplitudes defirsd(2.33,34-36,37)

with the results of computer simulations. Such carigon with the results of the anelastic
computer simulation of Glatzmaier and Roberts (J4@3R96) are given in Table 3.

Table 3
Vv B J [
IA 12x 104K 8.3x10*ms™?! 11mT 0.12Am2 7.5x 10'm
GR96 4x107*K 5x10*mst 5mT - -

Comparison betwgen the typical values of Glatzmaier and Robert896) simulation and
the amplitudes given by (2.33,34) and (B3p

The difference of the specific entropy between I&#l CMB in GR96 computer
simulation is of order ofAS=2x10*Jkg'K*. The correspondent value of the super-

adiabatic temperature drop can be estimated\by- AS(To / ) =11x 10 * Jkg* K which

is close to our temperature amplitude, but thecgipiemperature of GR96 is two to three
times smaller. The maximal values of the flow vélpand the intensity of magnetic field
in this work are20x10“*m/s and 20x10*mT, respectively. They approximately exceed
two times our correspondent amplitudes, but thectpvalues of GR96 appear to be
smaller than ours.

Though our super-adiabatic temperature unit (2s&&ms to be slightly overesti-
mated, we conclude that our estimation is in a gpaalitative agreement with the results
of Glatzmaier and Roberts (1996).

As another test we use the Boussinesq computerlaiomu of Glatzmaier and
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Roberts (1995). In comparison with their anelaapproximation the authors use a larger
heat flux (almost of an order of magnitude lardert in GR96). At the same time the tur-
bulent thermal diffusivityx; in this work is approximately with one order of gnétude

smaller than in GR96. Results of their computerusation in comparison with our ampli-
tudes (2.33-37) are given in Table 4.

Table 4
9 \% B J I
IA 1.1x 102K 7.8x103ms? 12mT 0.7Am2 9.5x 10m
GR95 1.x10%K 3x10°3ms?t 15mT - -

Comparison between the typical values ofZBtaier and Roberts (1995) simulation and
the amplitudes given by (2.33,34) and (23%-

Table 4 shows that the amplitudes ®&nd V increase with approximately one
order of magnitude in comparison with these givgnThble 2. Though our value of the
flow velocity is at least two times larger thanttbhAGR95, we believe that (2.33-37) are in
qualitative agreement with the results of GR95.

We will use amplitudes (2.33-37) in order to nomensionalise the equations and
boundary conditions of the problem. To do this,Ustdivide (2.10) by20v,, (2.12) by

dity, (2.4) by B/t, and (2.6) byd,/l =v,/(rPe Y?), where the correspondent units are
defined by (2.33-2.37). (As before, and r, /v, are used as the space and the time scales).
Then we obtain:

R, aa—\t/ﬂv.V)v =-VP-1,xV+1,W+AIxB+ EV¥V, V.V=0, (2.3839)
90 o s 1925 2 LAY
E+(VV)19: Pe 'V 19—Q—+ QJ — rDO’l9Vr, (240)
0B oo e o
= VXV Bl +7v?8, VB =0, (2.41,42)
8—{9—\/%61’3 9 ¢ )=0 (2.43)
ar @ ’ '
where
@ K 4/3 a v Ay
, Pee—L| RH® B, A 6
R PR vt g:{l/-r ZQr02 :g
-4/3 A-2/3
'sa n Do sa Rt 7RI3
— < =11 Zovsa — pelfr @5
& = Tre Q= Tre Ro=Pe - G

If parameterQ,, is smaller than 1, then the convection in the whugire is impos-

sible, since in this case the super-adiabatic fieatis too small to support the reference
state. Fortunately, the whole heat flux on ICB extsethe adiabatic heat flux there only
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with approximately 50%. Respective@saNl.S for the Earth’s core.

We choose the space density of the internal enel*gycp;dﬁ as a unit of space
density for all types of energies(ands"). Then dividing (2.14-16) byV,/t)s) we ob-
tain the dimensionless equations

R° [ = D0V~lP_\7+%\7§k — BV x[VxV]|+

T2 (2.44)
~~ A -~ ~12
+D0[rVr19+Q§al/6V-[jXB]]—DOE[VXV]
6%19 \/— 19 F D n ~2 ~12 ~~ A
PeV 40 LD EVV] - QW9 2.45
“Tpe T TR QR Thewr T R (2.45)
D, 9e™_ D, n ixB V[ixB] g j
[BxV xB _p, |
olPe ot Jpe’ |BXVX I+ . ./pe] °| G TP (2.46)

Archimedean force converts heat into mechanicalkwdihe efficiency of this
process is restricted by the efficiency of Carnatle. Taking into consideration the equaity

D, ~ A_T" (2.47)
To

which follows from (1.6), we see that all termgliwe equations for the kinetic and the mag-
netic energies are multiplied by the Carnot efficie Thus the Carnot constraint is
automatically incorporated into our energetic balarce. The amplitudes of the dimen-
sionless energies are of order of 1. So the adeffis in front of them give their relative
values. The internal energy 1, the kinetic and the magnetic energies are respéct
~D,(R/2) ~4x10"and ~ (D/2)«/Pe~ 5.6x 103,

All the terms in (2.44), except the underlined, sneall. It follows from here that
the work of the Lorentz force is of order of therlwof the Archimedean oney(D,~1/3).
—1/2

The Ohmic dissipation in (2.46) seems to be muchllem(~ Pe
force work. This probably means that the fieldasglel to the flow.
Summering (2.44- 46) we obtain the equation forvthele energy

) than the Lorentz

9 oRo k o
m_v.l, 2.48
8t5 T \/ﬁa (2:48)
where
| =Ve! —Pe Vi —
Ry Pe
\/_ (2.49)

[BX\?X@]_ n ]A><|§_|5\7 F\’O\/}gk

JPe kKt Pe 2

— E\7><[V><\ﬂ

o

is the energy flux
The spectral (ins; ) distributions (2.33-37) pretend to estimate thgktudes of
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solution for all scales (the small means the small grid cell size in the computeuim

tion). If that is true, then the time derivativdfs\0, 9 and B have to be independent ef .

In the opposite case, (2.33-37) would be destrdyethe time evolution even if the initial
amplitude distributions satisfy it.

The turbulent diffusion term in the equation (2.40 (2.45) depends oke and
so on x; as well. To avoid these dependence we assumeuitbatient diffusion is defined

not by the large scale , but by the small space scdle-r./,/Pe, . Then the first two terms

in rhs of (2.40) are of the same ord&t:Vd ~ Pe 2v. Pe Y479 .
In this connection it is appropriate to cite Glatien and Roberts (1996) who, de-
scribing their computer simulation, writeDiffusive heat flux due to unresolved turbulence

[a,=Pe¥?vi] is driven by the entropythe super-adiabatic temperatdregradient;
whereas the conductive heat flux down adiabadic= KVT(r) = (r / R) Pe 2] is driven by
the reference state temperature gradient. Althotigdse two heat fluxes are comparable
[layl~ (1/2Pe ?and g; ~10*Pe Y] in our simulation, the divergence of the turbulent
heat flux[V.q; = Pe w29 ~1/2] is almost two orders of magnitude greater than the

divergence of conductive heat fluxv-q. = (3/R)Pg** ~8.6x 10°°]. The divergence of

the convective heat fluxv- V9 ~1/2] (due to the resolved large scale) is comparable to
the divergence of the turbulent heat flux Pe;'v?9 ~1/2] (due to parameterized unre-

solved small scales); they typically have opposig@s at a given location and are largest
near the boundaries

Here in the square brackets we give our correspungdues. Since our super-
adiabatic temperature unit is rather overestimateriadopt for estimations=1/2. Why
are q;)(F) and qf(F) “comparable™? The whole heat flux (averaged oweglenough time
periods) conserves. This flux on ICB is mainly gewadiabatic one, but on CMB it is
predominantly adiabatic. In the core, the supeafaalic heat flux gradually converts into
adiabatic and so they are of the same order. (list the reason why we cannot neglect
this term in (2.40) in spite of its relative smals.) Why do these “comparable” fluxes
have different divergences? The reason is the sspalte scale of the super-adiabatic tem-
perature.

Thus we conclude that the terms in our heat tramspgquation (2.40) are in a
qualitative agreement with Glatzmaier and Robe(ts36) computer simulation.

In neglecting the smallp(E) andO(R,) , terms in (2.38) we obtain that can be

expressed in terms of the Archimedeam and the magnetie- ﬁx§] velocities. The first
of them does not depend on, but the second one can depend on it through dieeits

numberq in (2.41), providing that the small space scaletlie magnetic field distribution
is the samd =r,/,/Pe, as that for the temperature. Therefore, we caanswer the ques-

tion if the flow velocity (2.34) and the magnetielél (2.36,37) spectra are correct for
K <1 .

Bulgarian Geophysical Journal, 2007, Vol. 33 31



A.Anufriev: Approximation of incompressible fluidhe geodynamo convection

The units of v, B and ¥ in (2.38-43) are chosen in a way to make the dimen

sionless amplitudes of these variables of ordek. dfhis choice also assumes that the time
scale is defined by the flow velocity; = L, /V,=r,/V,. However, most of the colleagues

use the diffusional time scale for whigk- L?/x; = r2/x, . Then the unit of the flow velocity
turns into ; /L, and respectively its amplitude enhancés: A where A= Pe @° and

Pe =975, but the amplitudes of and B keep their values1. To transform equations
(2.38,40,41) to this type of scaling, we have tdtiply them by Pe. Then we obtain:

oV

PEEHV.V)V — _VP-1,xV +1, Ard + AQLYSI xB + EVAV, (2.50)
;
5’@ = -~ 2% .2 ~ S
EJF (V-V)9 =V —Q + Qyj>— rD,oVr, (2.52)
8@ = fand _l 2/\ -
E:VX[VXB]-FQ VB, V-B=0, (253,54)
9 _ Jpe 3, b= (2.43)
or
where
. R P 4/3 v
A=Peq’=975Q¢°  Pe=|—| Rd®= 975 Ec;= 6 fi
K1 20r;
3 PQ; 8.1 D °1/3 —1 8.75 Rt vt
Qr=—"Fz—==—, =—2JPe Q"= q =5, ag=— , Pr=
R Qsa Qsa Q q ? @23 n KT

Note that the number of degrees of freedom in tleegeations is very small. In

fact, only two parametersQ,, andg, can be variable. In the estimate above we choose
Ky =vp =17 =2m’s L,

Coefficient 4 at the super-adiabatic temperature in (2.50) mronly called the
Raleigh numbeRa. Its value is widely discussed in literature (€eg. Jones (2000) or
Gubbins (2001)). In our estimate equalsPeand is expressed througka. However, it is
much smaller thaRa. That is why we use another name for this valbe,Archimedean

number.

Conclusion

Relatively powerful computers appeared in the ¢ugtrter of the former century,
which allowed to start computer simulations of gemdynamo. Most of these simulations
were carried out in the frame of the incompressiBdeissinesq approximation. The reason
for this is the relatively small<{ 20%) compressibility of the Earth’s core.
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The essential difference between the Earth’s carethe laboratory convections
can be explained in the following manner. The caagibility of the convective layer is

defined (see e.g. Braginsky and Roberts (1995)plammeterD:ﬁoad/cp $, whered is

the thickness of the layer. This parameter is sfoalthe laboratory convection due to the
small values ofd . However, for the Earth’s cor® is big enough £ 0.27), sinced is very
large.

In the present work we show that the Boussinesgoappation is an incorrect
model for the Earth’s core convection, becauséetst transport equation neglects the es-
sential part of the heat flux, the adiabatic ohdwals been shown in section 1 that this heat
flux does not vanish in the incompressible linfit— 0. It creates an additional cooling in
the equation for the superadiabatic temperature.

The work of the Archimedean force in the Boussinaggroximation is assumed
to be negligibly small. Therefore, the Boussinesgiergy conservation law takes the form
of heat conservation only. Here we found out that éfficiency of the convection, when
converting the heat into energy of the magnetikfies of order of the efficiency of Carnot
circle. This efficiency for the Earth’s core is mhall ~ D and so it has to be taken into
account. The work of the Archimedean force alsonfoan additional cooling source in the
equation for the superadiabatic temperature.

In the present work we propose a new Incompressipfgroach which takes into
consideration both of these effects (the adialmit the Archimedean cooling). Since the
work of the Archimedean force is not neglectedun method, the heating, which is due to
the Ohmic dissipations, is not small and is incthdethe heat transport equation as well.
(We assume that this term can enhance essenti@lgytnamic of the flow). As a result,
we obtain the law of the energy conservation (2.48lich takes into account all forms of
energy, not only the heat. This equation in itegnal form can be used for the control of
the solution during the numerical simulations.

The Boussinesq approximation does not have its omit for the temperature.

That is why the temperature differened between ICB and CMB is used for temperature
scaling. As a result, an enormous Rayleigh humbéhé momentum equation arises as a
coefficient at the Archimedean force. Its unreaisalue is widely discussed in literature
(see e.g. Jones (2000) or Gubbins (2001)).

By using the non-linearity of the heat transpontag@pn we were able to estimate
the amplitudes of the unknown variables (the flalogity, the adiabatic temperature etc).
These amplitudes have been used for non-dimengiind@ of the problem. As a result,
our coefficient at the Archimedean force takes aenate value of order of the Peclet num-
ber Pe, instead of the enormous Rayleigh number in thasBimesq approximation. For
this value we use another name, the Archimedearbaum
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Hpﬂﬁnmlce}me Ha HeCBUBaeM (I)J'lyl/l)l KbM KOHBEKIMATA B 3¢€MHOTO SA/IPO

A.TI1. Anydpues

Pesrome. MarnutHoTo mone Ha 3eMsATa ce Ch3AaBa OT KOHBEKTHBHM TE€UEHUS B HEWHOTO
€JIEKTPONPOBOJSAILO T€YHO siAp0. CHOTBETHO ypaBHEHUATA 3a TE€PMHUYHATA KOHBEKIMS ca
CBIIECTBEHA YacT OT IpodiieMa 3a TeHepaLusITa Ha ToBa Iojie. Thi KaTo CBMBaEMOCTTa Ha
SAIpPOTO € MAJIKA, KOHBEKIMATa B HET0 OOMKHOBEHO C€ W3y4yaBa B NPHOJIMKEeHHETO Ha Byc-
cuneck (BIT), mpeHeOpereaiio cBMBaeMOCTTa Ha TeYHOCTTA. To3H moaxon, obade, HESIBHO
ce mnpeHeOpersa rojeMusiT KOHIYKTUBEH TOIUIMHEH IOTOK CBBP3aH C paslpelesieHne Ha
TeMIiepaTypa B aJuadaTHYHOTO pe)epeHTHO ChCTOSHKUE Ha sAApOoTO. B HacTosimara pabora
ce Ipejsiara HOB HECBUBAEM I10/IX0J1, KOMTO OTYMTA BIMSHUE HAa TO3U €(EKT B ypaBHEHHETO
3a TOIUIMHEH NpeHoc. B ToBa ypaBHeHUe BB3HUKBAT /Ba HOBU WJIEHA, HAPEUEHU OT HAC
annabaTH4HO U APXMMEZOBO OXJaXJaHe. [IbpBUAT OT TSAX ONUCBA TOIUIMHA, MOJUIbpPIKAIIA
ajmabaTH4eH NMpoQuI Ha TEMIEPAaTYypHO paslpeAeieHre Ha aauadaTHYHOTO pedepeHTHO
CbCTOSIHME. BTOpUAT WieH e CBbp3aH ¢ Ta3M 4acT OT TOIUIMHATA, KOSTO C€ MPEBpPbBILA B
MeXaHH4Ha paboTa, Ch3/aBalla MarHUTHO I0Jie. BcuukuTe Te3u HOBH WICHOBE 3aBUCAT OT
pas3nukara Ha IUTBTHOCTTAa MEX/y FOpHaTa M JI0JIHATa T'PAHUIM Ha SJIPOTO M U34e3BaT, KO-
raTo Ta3W pa3jivKa KIOHH KbM HYJIa.
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