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Abstract. The problem of applying the Boussinesq approximation to the convection 
in the Earth's core is discussed. It is shown that the Boussinesq approximation ne-
glects the essential part of the heat transport in the core, the adiabatic heat flux, which 
does not vanish in the incompressible limit. It also neglects the cooling due to the 
work of the Archimedean force. As a result, the law of energy conservation reduces to 
the heat conservation only. Thus, the Boussinesq approximation is inadequate for de-
scribing of the Earth core convection.  Therefore we propose here a new, Incom-
pressible approach, which takes all these effects into account. In the frame of this new 
approach we estimate the "natural" units for the Earth's core convection. On this base 
we redefine the value of the Rayleigh number which is widely discussed in literature. 

Key words:  anelastic convection, Boussinesq approximation, geodynamo, com-
pressibility. 

Introduction 

Generation of Earth's magnetic field is energetically supported by the convection 
in the Earth's liquid core. That is why the adequate describing of the convection is so im-
portant for the geodynamo. 

Most of the computer simulations in this area (see e.g. Fearn and Morrison (2001) 
Sakuraba, and Kono (1999) Cupal et al (2004)), were carried out in the Boussinesq ap-
proximation. Even the "numerical dynamo benchmark", Christensen et al (2001), works on 
this base. Therefore, the question whether the Boussinesq approximation is adequate for 
describing of the Earth's core convection is very significant for the geodynamo problem. 
The present work is devoted to answer this question. 

The main problem of theoretical physics is understanding the sense of the physical 
phenomena. This understanding is usually impossible without simplification of the model. 
That is why, the neglecting the compressibility of the Earth’s core in the Boussinesq ap-
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proximation, is an useful step for understanding the convection in the core, in spite of the 
relatively big density difference ( 20%/ρ ρ∆ ∼ ) between its bottom, 1r r= , and top, 2r r= , 

boundaries. For the first and for the second ones, abbreviations ICB (Inner Core Boundary) 
and CMB (Core Mantle Boundary) are commonly used. 

The reference state in the Earth's core is adopted to be hydrostatic, well mixed and, 

consequently, adiabatic: ( )1 1( ) ( ) ( )/ ( )r r r rT T
γ

ρ ρ= . Respectively, the temperature difference 

T∆ between both boundaries also vanishes in the inviscid limit 0ρ∆ → . Therefore, we 

accept both values to be constant in this incompressible limit: oρ ρ=  and  oT T= . 

We will see in the next section that in spite of 0T∆ → , the adiabatic heat flux 

4 ( / )o d drTπρ κH =  does not vanish in the incompressible limit. There is also one more 

value, the gravitational acceleration ( / )o og g r r= which does not vanish in this limit. It rises 

only 2.8 times between the two boundaries and the Boussinesq approximation takes this 
change into consideration. However, the adiabatic heat flux which enhances 23 times is 
neglected in BA! May be its value is too small to be taken into account, in spite of being 23 
times greater? On the opposite, the adiabatic heat flux is equal to approximately 2/3 of the 
whole heat flux leaving the core on CMB. Neglecting such a large effect is a besetting sin 
of the Boussinesq approximation. Therefore, here we propose a new, Incompressible Ap-
proach, which takes the adiabatic heat flux into account. 

Incompressible reference state 

Our aim here is not to study the whole reference state of the Earth’s core, but only 
to watch its behavior in the incompressible limit 0ρ∆ → . Our estimations below are based 

on the Preliminary Reference Earth Model (PREM) by Dziewonski and Anderson (1981). 

The equations which govern the gravitational accelerationg , temperatureT , and 

density ρ  for our adiabatic reference state are 

           
2

2 2

1 1 1 1
4  ,          ,           

p p

g g gdr d dTgG
dr dr c dr cr rT

α ρ α
π

γ
= =− =− .                        (1.1,2,3) 

Here G  is the gravitational constant,  ( / ) pTα ρ ρ=− ∂ ∂  is the coefficient of thermal expan-

sion, γ  is the Grüneisen parameter and pc is the specific heat at constant pressure. The 

values of these and other parameters used in this paper are given in Table 1.  

Table 1 

G

 
11 3 1 26.67 10 m kg s− − −×  α

 
5 11.4 10 K− −×  pc  2 2 1860m s K− −  

1r  61.22 10 m×  2r  63.48 10 m×  d

 
62.26 10 m×  

κ

 
5 2 15 10 m s− −×  η

 
2 12m s−  Tκ  2 12m s−  

oρ  4 31.1 10 kg m−×  oT  4650K

 
γ

 
1.35
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Here 2 1d r r= −  is the thickness of the liquid core spherical shell,  η  is the magnetic diffu-

sivity, κ  is the thermal diffusivity and Tκ  is its turbulent value. Values of  oρ   and  oT  are 

defined by relations:  ( ) / 2o ICB CMBρ ρ ρ= +  and   ( ) / 2o ICB CMBT T T= +  . We take these 

parameters from Roberts and Glatzmaier’s (2000) work.  
Crude estimation based on (1.2,3) gives the difference of temperature and density 

between ICB and CMB: 
 

        2,        ,    where  0.27    and  7.2 .o
o o

p

g d
T T D D D g ms

c

α
ρ ρ −∆ ∆ = = =∼ ∼                     (1.4) 

This estimate shows that  T  and ρ  change slowly ( D∼ ) with r . At the same time 
the variable ( )g r  changes approximately three times between ICB and CMB. So the vari-

ables of RS can be divided into two groups. The first one includes parameters such as T , 

and ρ  which change slowly between  1r  and  2r . The second (“fast”) group consists of 

parameters such as e.g. g , which change essentially between these two boundaries.  
The solution of the equations (1.1-3) can be searched by iterations.  In the leading 

approximation we will neglect the change of the “slow” parameters: ( )oconstρ ρ= = and 

( )oT const T= =  and will take into consideration the variation of the “fast” values only. In 
the next approximation we will use the fast approximation values in order to obtain the 
small variation of the “slow” variables. This process can be repeated for the next approxi-
mations, but further we will be interested mainly in the leading approximation which could 
be called the incompressible one. 

The fast variables are given by the right hand sides of the equations (1.1-4). They 

are ( )g r , ( )D r , /dT d r , and /d drρ . An additional extra-fast variable, the conductive adia-
batic heat flux 

2
po

dT
c

dr
π ρ κH = 4 r  

 
has to be included in this group as well. Then the direct integration of (1.1-3) gives: 
 

3

3
     ,     ,     ,     

o o o
o o oo

o o o o o o o

Dr r dT T r d r r
g g D D D

r r dr r r dr r r r

ρρ

γ
= = = =−, H = H ,                    (1.6) 

 
where 6

1 2( ) / 2 2.35 10or r r m= + = ×  and 

 

2 24
7.22 ,   0.276,    1.8 .

3
o oo o

oo o o o o
p

r G g r
g ms D g T TW

c

π ρ α
π ρ κα−= = = == H = 4 r                 (1.7) 

The results of our Incompressible reference state (IRS) are compared in Table 2 
with the values used by Roberts and Glatzmaier (2000) (RG). 



A.Anufriev: Approximation of incompressible fluid to the geodynamo convection 

 Bulgarian Geophysical Journal, 2007, Vol. 33 23 

Table 2 

 1( )g r  2( )g r  1( )rH  2( )rH  

IRS 23.8ms−  210.7ms−  0.25TW  5.8TW  

RG 24.4ms−  210.7ms−  0.3TW  5.4TW  
 

This Table shows that incompressibility of the reference state does not disturb it 
essentially. For any variableA , let us introduce a value / ( )oDA A A r=∆ , where  A∆ =  

2 1( ) ( )A r A r− . Then it follows from (1.6) that 

                                 

3 3

( ) 0.96,      ( ) 1 1 =3.1.
2 2o o o

d d d
D g D

r r r

       = = + − −        
= H                                    (1.8) 

 

Equations for the “slow” variables can be obtained by substitution of the “incom-
pressible” D  into (1.2,3): 

                                        
(1) (1)

 , .
o o o

o
o o o o

DdT T r d r
D

dr r r dr r r

ρρ

γ
= =−  

We are interested not in the solutions of these equations but only in their differ-
ences on both boundaries: 

 

           
2 2

2 1
1 2= ( ) ( ) = = , .

2
o

o o oo o o o
o o

Dr r d
T T r T r T D T D T D

r r
ρ ρ

γ

−
∆ − ∆ =∼           

It follows from here that 
 

                      
( )

( ) = 0.26, ( ) 0.19.o
o

o o oo

DT d d D T
D T D D

r rT

ρ
ρ

γ γρ

∆ ∆
= = = = = =                   (1.9) 

Parameter oD  characterizes the compressibility of the liquid in the Earth’s core. In the 

incompressible limit 0oD →  the differences of the temperature and density between the top 

and the bottom boundaries vanish. However the “fast” parameters ( )g r  and ( )rH are unaf-
fected by this limit and respectively cannot be neglected, if parameter $d$ does not change. 
In fact, neglecting the adiabatic heat flux leads to disturbance of the law of the energy con-
servation: the energy flux enhances without energy sources. 

 That is why the commonly used Boussinesq approximation is incorrect 
in application to the Earth’s core: it violates the energy conservation law. This ap-
proximation could be correct if the change of the adiabatic heat flux is negligible i.e. if  

( ) 1D ≪H . As (1.8) shows, the above is possible if  3 / 2 1od r ≪ , say (2 / 3) /10od r=  

150km∼ . In this case we must neglect the changes not only in the “slow” but in the “fast” 

parameters as well.  This means that g in the correct Boussinesq approximation does not 
depend on r . 
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The incompressible approach to the Earth’s core convection 

 Anufriev et al (2005) proposed an anelastic liquid approximation for the Earth’s 
core convection. Their momentum heat transport and induction equations can be written in 
a form: 

( ) ( ) 2 ,       ( ) 0,
( ) ( ) ( )

v

r
o

P
g r r

t r r r
αϑ ρ

ρ ρ µ ρ

∂ ∇× ×
+ ⋅∇ =∇ + + − × + ∇⋅ =

∂
V B B F

V V 1 Ω V V       (2.1,2) 

         1 ( )
( ) ( )[ ] ,

( )
T r T

p p

g r H
r T V

t c r cr

ϑ α ϑ
ϑ ρ κ ϑ κ ϑ κ
ρ

 ∂ ∂ + ⋅∇ = ∇⋅ ∇ + ∇ − − +
 ∂ ∂ 

V                (2.3) 

                          2[ ] ,            0,
t

η
∂
=∇× × + ∇ ∇⋅ =

∂
B

V B B B                                  (2.4,5) 

where vF  is the viscous force. 
 The Earth’s core convection is driven by the heat extracted at ICB due to solidifi-
cation of iron on the inner core surface. The simplest model of this process is the uniform 
super-adiabatic heat flux 1( )saQ r  prescribed at ICB. To complete the formulation of the 

problem we also assume that the super-adiabatic temperature is uniform at CMB: 

                             1
22

1

( )
,             ( ) 0,

4
sa

T

Qr
r

r r k

ϑ
ϑ

π

∂
= =

∂
                                       (2.6,7) 

where T p Tok cρ κ=  is the thermal conductivity. 

As usual, we will use the no-slip boundary conditions for the flow velocity and 
correspondent conditions for the magnetic field at both boundaries. Further we will neglect 
the compressibility and use the Incompressible reference state (IRS) (1.6,7) of the Earth’s 
core. Then the momentum (2.1), the continuity (2.2) and the heat transport (2.3) equations 
take their incompressible form: 

2( ) ( ) 2 ,       0,r T
oo o

P
g r

t
αϑ ν

ρ ρ µ

∂ ∇× ×
+ ⋅∇ =∇ + + − × + ∇ ∇⋅ =

∂
V B B

V V 1 Ω V V V        (2.10,11) 

                   ( )
( ) [ ] .T r

p p

g r H
T V

t c c

ϑ α
ϑ κ ϑ κ ϑ

∂
+ ⋅∇ =∇⋅ ∇ + ∇ − +

∂
V                            (2.12) 

 The last of them differs from the heat transport equation of the Boussinesq ap-

proximation by two additional terms. The first one 2 ( )T rκ∇ describes the heat loss due to 
supporting the adiabatic heat flux. We will refer to it as the adiabatic cooling. The other 
new term, ( ( ) / ) rD r d Vϑ , describes the cooling due to the work of the  Archimedean force 

( ) ( )r g r αϑ1 r  in the momentum equation. We will call it the Archimedean cooling. The 

fourth term in rhs of (2.3) describes the cooling due to the conversion  of the internal en-
ergy into the kinetic energy of the non-resolved turbulent eddies. As this term is small, we 
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neglect it in our approximation. 
 It follows from (1.6) that the adiabatic heat flux is linear in r  and thus the adia-
batic cooling is uniform: 

            
2

( ) , ( ) 3 .
o oo

r o
o o o

D T r T
T r T r D

r r r
κκ κ κ κ∇ =− ∇⋅ ∇ =−1  

Induction equation (2.4) is a consequence of the Maxwell and Ohm equations 

                    ,    where     and    .ot
µ

σ

∂
=∇× = − × =∇×

∂
B j

E E V B j B                        (2.13) 

 Mltiplying (2.7) by oρ V , (2.9) by p oc ρ  and (2.13) by / oµB  we obtain the energy 

balance for the kinetic, 2 / 2k
oε ρ= V ,     

        2[ ] [ ] ,
k

k
ro o oP gV

t

ε
ε ρ ν ρ αϑ ρ ν

∂
=−∇⋅ + + ×∇× + + ⋅ × − ∇×

∂
V V V V V j B V              (2.14) 

for the internal, p ocϑε ρ ϑ= ,            

          

,( )p T r ro o
T

c g V
t r

ϑ
ϑε
ε ρ κ ϑ κ ρ αϑ
 ∂ ∂ =−∇⋅ − ∇⋅ + + ∂ ∂  
V 1                                       (2.15) 

and for the magnetic, 2 / 2m
ooε ρ µ= B ,             

             2,        =  
m

o o
ot

ε
ηµ ηµ

µ

∂ ×
=−∇⋅ − ⋅ × − − ×

∂
B E

V j B j E j V B                                     (2.16) 

energies.  
 Summering (2.14), (2.15) and (2.16) we obtain the equation for the whole energy 
balance: 

            2 2[ ] [ ] ,k m
oo oH

t
ϑε ε ε ρ ηµ ρ ν

∂
+ + =−∇⋅ + − − ∇×

∂
I j V                                (2.17)  

where           

          [ ] [ ] ,( )k
p T ro o

o

T
P c

r
ϑε ε ρ ν ρ κ ϑ κ

µ

× ∂
= + + +∇⋅ − × ∇× − ∇⋅ +

∂
B E

I V V V 1           (2.18) 

is the energy flux. 
 Further we will assume that the internal heating is absent and as a result the whole 
energy conserves. This means that changing the energy in any volume has to be due only to 
the flux across its walls. Then it follows from (2.17) that in the absence of  radioactive 
heating, the heating in the volume is defined only by the Ohmic and the viscous dissipa-
tions: 

                                         2 2[ ] .oo oHρ ηµ ρ ν= + ∇×j V                                      (2.19) 

The viscous dissipation is small and will be neglected everywhere. 
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 Let us integrate (2.17) over the whole liquid core. Then we obtain: 

                                            2 1[ ] ( ) ( ),k mE E E r r
t

ϑ∂
+ + = −

∂
J J                                          (2.20) 

where 

             
2 2 2

2 2 2

1 1 1

4 ,     4 ,     4 ,k k m m

r r r

E r dr E r dr E r dr

r r r

ϑ ϑπ ε π ε π ε= = =∫ ∫ ∫                       (2.21) 

means the whole kinetic, internal and magnetic energies and  

                                                      2( ) 4 ( ) .rr r I rπ=J                                                      (2.22) 

means the whole energy flux. The angle brackets here mean averaging over whole sphere: 

                                
2

0 0

1
( ) ( , , )sin .

4
A r A r d d

π π

ϑ φ ϑ ϑ φ
π

= ∫ ∫                                                (2.23) 

 The normal component of the flow velocity vanishes on the solid boundaries. So 
the energy flux (2.18) averaging over sphere takes a form: 

    1,2
1,2 1,2 1,2

( )
( ) [ ] ( ) ( ).r

r r p T ro o
o

r
I r r c T r

r
ρ ν ρ κ ϑ κ

µ

⋅ × ∂
= − ⋅ × ∇× − +

∂

1 B E
1 V V 1       (2.24) 

The whole energy k mE E Eϑ+ +  is limited. So the lhs of (2.20) vanishes under av-
eraging it over a long time interval. Then this equation takes the form of balance of the 
energy fluxes on ICB and CMB: 2 1( ) ( ) 0r r− =J J . The first and the second terms in (2.24) 

describe the fluxes of the kinetic and magnetic energies.  They change the kinetic energies 
of the mantle and the inner core and the magnetic energy into the whole space. These terms 
also vanish under averaging over the long time interval. Then the energy flux balance con-
verts into the balance of the adiabatic and super-adiabatic heat fluxes which can be written 
in a form 

                            
1 22 2 2 22 1

1 2 2 1

( ) ( ) ( ) ( )
.T T

r r T r T r
k r k r k r r

r r r r

ϑ ϑ  ∂ ∂ ∂ ∂ − = − ∂ ∂ ∂ ∂  
                                (2.25) 

Eq. (2.25) shows that the loss of the superadiabatic heat flux between ICB and 
CMB equals the adiabatic cooling of the whole core 

   
2 2 2 22 1

2 1 2 1 2 1 2 1
( ) ( ) .( ) ( ) 4 4

o
a o

o o

T r T r T d
Q r r k r r k D r r r r

r r r r
π π
 ∂ ∂   − = − =− + +    ∂ ∂  

= H H         (2.26) 

 Here we take (2.8) and (2.9) into account.  

The value of the superadiabatic temperature is small. The superadiabatic heat flux 
on ICB can be increased if we assume that a thin temperature layer arises there with thick-
ness 
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1,  where  Pe = .o o

T

r V r
l

Pe κ
∼

                                                   (2.28) 

 Then the jump of the superadiabatic temperature across the layer can be estimated 
from (2.25) as 

                                             1/21 1
1 2 2

1 1

( ) ( )
.

4 4
sa sa

o
T T

Q r Q r
l r Pe

r k r k
ϑ

π π

−= =                                          (2.29) 

We assume that this jump is of order of the typical value of ϑ .  Estimation for the 

Archimedean flow velocity can be obtained directly from (2.10): 1( / 2 )A oV g αϑ= Ω . We 

assume further that this velocity is of order of the typical flow velocity 1V . Then we obtain 

an estimate for 1ϑ : 

                                               1
1

2 2
.T

o po

V
l Pe

D cg

κ
ϑ

α

Ω Ω
= =                                                     (2.30) 

Equalizing two estimates (2.29) and (2.30) for 1ϑ  we obtain an equation for Pe . 

Its solution 
2/34/3

1
2 2

1

( )

8
o o sa

T o

r D Q r
Pe

r

κ

κ π κ ρ

  
  
   Ω   

=                                               

can also be presented in the form:   

         �

4/3
2/3 2/3 1( )ˆ ,    where    Pe ,      sa

c sa c sa
T a

Q r
Pe Pe Q Ra Q

Q

κ

κ

 
 = = = 
 

 ,  and                           (2.31) 

2
154.8 10

2 2 2

o op o o oo o
o

c D T g T r g Tr
Ra R D R R

α α

κ κ κ

∆
= = = = ×

Ω Ω Ω
 (2.32) 

is the well known Rayleigh number. Parameter R is defined by the expression 

2
2 2
2

11

1 11.5.
o

d r r
R

r rr

 
 = + + = 
  

 

At the threshold of convection in the whole liquid core  the superadiabatic heat 
flux on CMB is absent. So it follows from (2.25) that 1( )sa aQ r Q= . Respectively cPe  is the 

critical value of Pe  for the case when convection is situated in the whole core. 
Now we can estimate the values of  1 (2 / )T o pPe D cϑ κ= Ω : 

 �

1/3
2/3

1 1/3
o

o sa
T

T
D R Q

Ra

κ
θ

κ

 
 =  
 

 (2.33) 

and 1 ( / )T oV r Peκ=  
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1/3

2/3 2/3
1

ˆ .sa
o T

V Ra Q
r

κ κ

κ

 
 =  
 

 (2.34) 

In fact, the momentum equation (2.10) presents the balance of the pressure, the 
Archimedean and Lorentz forces. The number of degrees of freedom of the pressure force 
is smaller than of the other two. That is why we assume that in some locations at least, this 
balance reduces only to the balance of the Archimedean and Lorentz forces 

                             
2

( ) .o
o o b

B
g r

l
ρ αϑ

µ µ

∇× ×B B
∼ ∼  (2.35) 

Further we will assume that the typical space scale of the magnetic field distribu-
tion bl  is the diffusive scale l  defined by (2.28). Then this balance allows to estimate the 

typical value of the magnetic intensity  and the electrical current 1J : 

 
1/3

1/6 1/6
1

ˆ2 ,o sao
T

B Ra Q
κ

ρ κµ
κ

 
 = Ω  
 

 (2.36) 

 
1/2

1/2 1/3
1 2

2 ˆ .o
sa

To o

J Ra Q
r

ρ κ κ

κµ

 Ω  =  
 

 (2.37) 

It is 1B  appropriate to compare our (IA) amplitudes defined by (2.33,34-36,37) 

with the results of computer simulations. Such comparison with the results of the anelastic 
computer simulation of Glatzmaier and Roberts (1996) (GR96) are given in Table 3. 

Table 3 

  V  B  J  l  

IA 412 10 K−×  4 18.3 10 ms− −×  11mT  20.12Am−  47.5 10 m×  

GR96 44 10 K−×  4 15 10 ms− −×  5mT  - - 

        Comparison betweϑ en the typical values of Glatzmaier and Roberts  (1996) simulation and  
        the amplitudes given by (2.33,34) and (2.36-37) 

 
The difference of the specific entropy between ICB and CMB in GR96 computer 

simulation is of order of 4 1 12 10S Jkg K− − −∆ = × . The correspondent value of the super-

adiabatic temperature drop can be estimated by 4 1( / ) 11 10o pS T c Jkg Kϑ − −∆ =∆ = ×   which 

is close to our temperature amplitude, but the typical temperature of GR96 is two to three 
times smaller. The maximal values of the flow velocity and the intensity of magnetic field 
in this work are 420 10 /m s−×  and 420 10 mT−× , respectively. They approximately exceed 
two times our correspondent amplitudes, but the typical values of GR96 appear to be 
smaller than ours.  

Though our super-adiabatic temperature unit (2.33) seems to be slightly overesti-
mated, we conclude that our estimation is in a good qualitative agreement with the results 
of Glatzmaier and Roberts (1996). 

As another test we use the Boussinesq computer simulation of Glatzmaier and 
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Roberts (1995). In comparison with their anelastic approximation the authors use a larger 
heat flux (almost of an order of magnitude larger than in GR96). At the same time the tur-
bulent thermal diffusivity Tκ  in this work is approximately with one order of magnitude 

smaller than in GR96. Results of their computer simulation in comparison with our ampli-
tudes (2.33-37) are given in Table 4. 

Table 4 

 ϑ  V  B  J  l  

IA 21.1 10 K−×  3 17.8 10 ms− −×  12mT  20.7Am−  39.5 10 m×  

GR95 21. 10 K−×  3 13 10 ms− −×  15mT  - - 

       Comparison between the typical values of Glatzmaier and Roberts  (1995) simulation and  
       the amplitudes given by (2.33,34) and (2.36-37) 
 

Table 4 shows that the amplitudes of ϑ and V  increase with approximately one 
order of magnitude in comparison with these given by Table 2. Though our value of the 
flow velocity is at least two times larger than that of GR95, we believe that (2.33-37) are in 
qualitative agreement with the results of GR95. 

We will use amplitudes (2.33-37) in order to non-dimensionalise the equations and 
boundary conditions of the problem. To do this, let us divide (2.10) by 12 VΩ , (2.12) by 

1 1/tϑ , (2.4) by 1 1/B t  and (2.6) by 1/2
1 1/ /( )ol r Peϑ ϑ −= , where the correspondent units are 

defined by (2.33-2.37). (As before, or  and 1/or V  are used as the space and the time scales). 

Then we obtain: 
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If parameter ̂ saQ  is smaller than 1, then the convection in the whole core is impos-

sible, since in this case the super-adiabatic heat flux is too small to support the reference 
state. Fortunately, the whole heat flux on ICB exceeds the adiabatic heat flux there only 
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with approximately 50%. Respectively ˆ 1.5saQ ∼  for the Earth’s core. 

We choose the space density of the internal energy p ocϑε ρ ϑ=  as a unit of space 

density for all types of energies (kε and mε ). Then dividing (2.14-16) by 1 1 1( / )V t ϑε  we ob-

tain the dimensionless equations 
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Archimedean force converts heat into mechanical work. The efficiency of this 
process is restricted by the efficiency of Carnot circle. Taking into consideration the equaity 

                                                                             
o

o
o

T
D

T

∆
≈                                                                        (2.47) 

which follows from (1.6), we see that all terms in the equations for the kinetic and the mag-
netic energies are multiplied by the Carnot efficiency. Thus  the Carnot constraint is 
automatically incorporated into our energetic balance. The amplitudes of the dimen-
sionless energies  are of order of 1. So the coefficients in front of them give their relative 
values. The internal energy 1∼ , the kinetic and the magnetic energies are respectively 

( /2)o oD R∼  74 10−×∼ and 3( /2) 5.6 10oD Pe −×∼ ∼ . 

All the terms in (2.44), except the underlined, are small. It follows from here that 
the work of the Lorentz force is of order of the work of the Archimedean one ( 1/3oD∼ ∼ ). 

The Ohmic dissipation in (2.46) seems to be much smaller ( 1/2Pe−∼ ) than the Lorentz 
force work. This probably means that the field is parallel to the flow. 

Summering (2.44-46) we obtain the equation for the whole energy 
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is the energy flux. 
The spectral (in Tκ ) distributions (2.33-37) pretend to estimate the amplitudes of 
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solution for all scales (the small Tκ  means the small grid cell size in the computer simula-

tion). If that is true, then the time derivatives of �V , ϑɵ  and �B have to be independent of Tκ . 

In the opposite case, (2.33-37) would be destroyed by the time evolution even if the initial 
amplitude distributions satisfy it. 

The turbulent diffusion term in the equation (2.40) and (2.45) depends on Pe  and 
so on Tκ as well. To avoid these dependence we assume that turbulent diffusion is defined 

not by the large scale or , but by the small space scale /o cl r Pe= . Then the first two terms 

in rhs of (2.40) are of the same order: � 1/2 1/2Pe Peϑ ϑ− −∇⋅ ∇⋅ ∇⋅Vɵ ɵ∼ . 
In this connection it is appropriate to cite Glatzmaier and Roberts (1996) who, de-

scribing their computer simulation, write:  Diffusive heat flux due to unresolved turbulence 

[ 1/2
cPeϑ ϑ−= ∇q ɵ ] is driven by the entropy [the super-adiabatic temperature] gradient; 

whereas the conductive heat flux down adiabatic [ 1/2( ) ( / )T cT r R Peκ −= ∇ →q rɵ ] is driven by 

the reference state temperature gradient. Although these two heat fluxes are comparable 
[ 1/2| | (1 / 2) cPeϑ

−q ∼ and 1 1/210T cPe− −q ∼ ] in our simulation, the divergence of the turbulent 

heat flux [ 1 2 1 / 2cPe
ϑ

ϑ−∇⋅ = ∇qɵ ɵ ∼ ] is almost two orders of magnitude greater than the 

divergence of conductive heat flux  [ �
1/2 3(3 / ) 8.6 10cT

R Pe− −∇⋅ = ×q ∼ ]. The divergence of 

the convective heat flux [ � 1/2ϑ∇⋅Vɵ∼ ] (due to the resolved large scale) is comparable to 

the divergence of the turbulent heat flux [ 1 2 1 / 2cPe ϑ− ∇ ɵ∼ ∼ ] (due to parameterized unre-

solved small scales); they typically have opposite signs at a given location and are largest 
near the boundaries.  

Here in the square brackets we give our correspondent values.  Since our super-

adiabatic temperature unit is rather overestimated, we adopt for estimations 1 / 2ϑ=ɵ . Why 

are ( )
ϑ

q rɵ ɵ   and � ( )
T

rq ɵ  “comparable”?  The whole heat flux (averaged over long enough time 

periods) conserves. This flux on ICB is mainly a super-adiabatic one, but on CMB it is 
predominantly adiabatic. In the core, the super-adiabatic heat flux gradually converts into 
adiabatic and so they are of the same order.  (This is just the reason why we cannot neglect 
this term in (2.40) in spite of its relative smallness.) Why do these “comparable” fluxes 
have different divergences? The reason is the small space scale of the super-adiabatic tem-
perature. 

Thus we conclude that the terms in our heat transport equation (2.40) are in a 
qualitative agreement with Glatzmaier and Roberts’s (1996) computer simulation. 

In neglecting the small, ( )EO  and ( )oRO , terms in (2.38) we obtain that �V  can be 

expressed in terms of the Archimedean ϑɵ∼  and the magnetic � ×  j Bɵ∼  velocities. The first 

of them does not depend onTκ , but the second one can depend on it through the Roberts 

number q  in (2.41), providing that the small space scale for the magnetic field distribution 

is the same /o cl r Pe=   as that for the temperature. Therefore, we cannot answer the ques-

tion if the flow velocity (2.34) and the magnetic field (2.36,37) spectra are correct for 

Tκ η≪ . 
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The units of ,  V B  and ϑ  in (2.38-43) are chosen in a way to make the dimen-
sionless amplitudes of these variables of order of 1. This choice also assumes that the time 
scale is defined by the flow velocity: 1 1 1 1/ /ot L V r V= = . However, most of the colleagues 

use the diffusional time scale for which 2 2
1 1/ /T o Tt L rκ κ= = . Then the unit of the flow velocity 

turns into 1/T Lκ  and respectively its amplitude enhances: �V A∼  where 2/3ˆ
c saA Pe Q=  and 

975cPe = , but the amplitudes of ϑɵ  and �B  keep their values 1∼ . To transform equations 

(2.38,40,41) to this type of scaling, we have to multiply them by Pe . Then we obtain: 
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Note that the number of degrees of freedom in these equations is very small. In 

fact, only two parameters, ̂saQ  andq , can be variable. In the estimate above we choose 
2 12

Т T m sκ ν η −= = = . 

Coefficient А  at the super-adiabatic temperature in (2.50) is commonly called the 
Raleigh numberRa. Its value is widely discussed in literature (see e.g. Jones (2000) or 
Gubbins (2001)). In our estimate А  equalsPeand is expressed through Ra. However, it is 
much smaller thanRa. That is why we use another name for this value, the Archimedean 
number. 

Conclusion 

Relatively powerful computers appeared  in the last quarter of the former century, 
which allowed to start computer simulations of the geodynamo. Most of these simulations 
were carried out in the frame of the incompressible Boussinesq approximation. The reason 
for this is the relatively small (∼ 20%) compressibility of the Earth’s core. 
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The essential difference between the Earth’s core and the laboratory convections 
can be explained in the following manner. The compressibility of the convective layer is 

defined (see e.g. Braginsky and Roberts (1995)) by parameter / poD g d cα= $, where d  is 

the thickness of the layer. This parameter is small for the laboratory convection due to the 
small values of d . However, for the Earth’s core D  is big enough ( 0.27∼ ), since d is very 
large. 

In the present work we show that the Boussinesq approximation is an incorrect 
model for the Earth’s core convection, because its heat transport equation neglects the es-
sential part of the heat flux, the adiabatic one. It has been shown in section 1 that this heat 
flux does not vanish in the incompressible limit, 0D→ . It creates an additional cooling in 
the equation for the superadiabatic temperature. 

The work of the Archimedean force in the Boussinesq approximation is assumed 
to be negligibly small. Therefore, the Boussinesq’s energy conservation law takes the form 
of heat conservation only. Here we found out that the efficiency of the convection, when 
converting the heat into energy of the magnetic field, is of order of the efficiency of Carnot 
circle. This efficiency for the Earth’s core is not small D∼  and so it has to be taken into 
account. The work of the Archimedean force also forms an additional cooling source in the 
equation for the superadiabatic temperature. 

In the present work we propose a new Incompressible Approach which takes into 
consideration both of these effects (the adiabatic and the Archimedean cooling). Since the 
work of the Archimedean force is not neglected in our method, the heating, which is due to 
the Ohmic dissipations, is not small and is included in the heat transport equation as well.  
(We assume that this term can enhance essentially the dynamic of the flow).  As a result, 
we obtain the law of the energy conservation (2.48), which takes into account all forms of 
energy, not only the heat. This equation in its integral form can be used for the control of 
the solution during the numerical simulations. 

The Boussinesq approximation does not have its own unit for the temperature.  

That is why the temperature difference T∆ between ICB and CMB is used for temperature 
scaling. As a result, an enormous Rayleigh number in the momentum equation arises as a 
coefficient at the Archimedean force. Its unrealistic value is widely discussed in  literature 
(see e.g. Jones (2000) or Gubbins (2001)). 

By using the non-linearity of the heat transport equation we were able to estimate 
the amplitudes of the unknown variables (the flow velocity, the adiabatic temperature etc). 
These amplitudes have been used for non-dimensionlazation of the problem. As a result, 
our coefficient at the Archimedean force takes a moderate value of order of the Peclet num-
ber Pe , instead of the enormous Rayleigh number in the Boussinesq approximation. For 
this value we use another name, the Archimedean number. 
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Приближение на несвиваем флуид към конвекцията в земното ядро 

А. П. Ануфриев 

Резюме.  Магнитното поле на Земята се създава от конвективни течения в нейното 
електропроводящо течно ядро. Съответно уравненията за термичната конвекция  са 
съществена част от проблема за  генерацията на това поле. Тъй като свиваемостта на 
ядрото е малка,  конвекцията в него обикновено се изучава в приближението на Бус-
синеск (БП), пренебрегващо свиваемостта на течността. Този подход, обаче, неявно  
се пренебрегва големият кондуктивен  топлинен поток свързан с разпределение на 
температура в адиабатичното референтно състояние на ядрото. В настоящата работа 
се предлага нов несвиваем подход, който отчита влияние на този ефект в уравнението 
за топлинен пренос. В това уравнение възникват два нови члена, наречени от нас 
адиабатично и Архимедово охлажданe. Първият от тях описва топлина, поддържаща 
адиaбатичен профил на температурно разпределение на адиабатичното референтно 
състояние. Вторият член е свързан с тази част от топлината, която се превръща в 
механична работа, създаваща магнитно поле. Всичките тези нови членове зависят от 
разликата на плътността между горната и долната граници на ядрото и изчезват, ко-
гато тази разлика  клони към нула. 


