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Abstract. The momentum equation for the flow in the Eartlidguid core which
depends on two small parameters (the Ekman, EtladRossby, Rnumbers), is

transformed to a form which depends on other twmampaters:</E and )\ =
JE /R, . The first of them is still small, but the otherenexceeds/E approximately

with six orders of magnitude. The Ekman suctionratary conditions for the inviscid
flow in the bulk of the Earth's core also dependtanfirst parameter only. Therefore
we search for the solution of the hydrodynamic prob in the form of the
decomposition in the small parame(i . The equations obtained show that the flow
of the leading approximation iy'E decomposition depends on the only parameter
This means that for fast rotating fluidg :\/m/v1 becomes the universal

parameter (as e.g. the Reynolds numRet VL ,/v in the hydrodynamics) and all

flows can be classified only by it. The whole flasvpresented as a sum of the force
and the geostrophic flows. The first one can bedlly determined in terms of
integrals of the force. The second one obeys thmtemns which depend on time
derivative of the geostrophic velocity. So the gexghic flow is the only part of the
whole flow which has its own time behavior. It eved together with magnetic field
and temperature distributions. In the opposite féihee flow fits instantly to the force
and its time behavior is defined entirely by thatte force distribution. There are
two (the inviscid A\ _ 0 and the viscous controlledl —, o) limits in which the

whole flow does not depend ok and hence on E. Therefore the flow converts in
Taylor state in these limits. Depending on the asty, the parametep for the
Earth’s core changes from.3x 102 for the kinematic viscosity t@.3x 13 for the
greatest value of the turbulent viscosity =) wheren is the magnetic diffusivity.
So both types of the Taylor state flows can beizedlin the Earth's core. From
computer simulations point of view the viscous coled case is especially
important, because all the simulations use impjicit » 1 For example, Glatzmaier
and Roberts (1995, 1996) in fact carried out thienulations forx ~ 10°. Thus their
asymptotic (at)\ - «) solution is approximately suitable for the Eatltore
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conditions with the “turbulent’\ =3.3x13. It is not trivial, since if we adopt the
same values oly(= Ve =n) and \A for Venus whereQ is with two orders of

magnitude smaller, thenbecomes of order of 1 and the viscous controlladerical
results become unapplicable to this planet. Morgobeing independent ol (and
respectively of E), the viscous controlled compusenulated flows convert into
Taylor state and so describe adequately the flothénEarth's core for the turbulent
viscosity. This is also a non-trivial conclusioaking into account that the typical
values of the Ekman numbers in computer simulatigpgally exceed these in the
Earth core with ten orders! Though the computeutations describe satisfactory the
flows with large\ , they are unapplicable to solve the problem wittaléer values of
A and especially in the inviscid limNt_, 0, due to the necessity of resolution of the
thin boundary layers. We believe that this difftputan be overcome by creating
computer codes on the base of the equations pesséerewhich are free of this
necessity.

Key words: geodynamo, Taylor state, inviscid limit

Introduction

The flow in the liquid core of the Earth is drivéy the Archimedean and the
Lorentz forces. This area is situated between tiheri core boundary (ICB) and the core
mantle boundary (CMB). Determination of this flagran important part of the whole
geodynamo problem. The dimensionless momentum antincity equations for it can be
written in a form:

R, p[aa\t/ +W><V} = -pOP-pl,xV +F +pEAV OCp(r)V =0, (1.1,2)

where W =0xV, F=F*+F° P=pp+V?/z and p is the pressure. Here
F2=rA(p(r) g(r)/r) C is the Archimedean ang® = R,JxB is the Lorentz forces
where J =0xB and C andB are the super-adiabatic temperature and the magineld

strength. (Generally C and be considered as coitgienBhe dimensionless parameters, the
Ekman, the Rossby and the Reynolds magnetic nurabemdefined respectively as

v R = Vi , R :& (1.3)

2127 ° 2QL, "o

whereL,, V,, L/V, \2Qnp,u, p, 2Qp,V, and2Qp, V, L ,are the space, the flow

velocity, the time, the magnetic field strengthe tensity, the force and the pressure scales.
Note that the viscous force in compressible liqajdnerally speaking, differs from this in
(1.1). However this difference is essential onlysade the thin layers where the viscous
force is negligible.

The Ekman number in the Earth's core is extremeiglls E~107"°. This leads to

great difficulties in the computer resolution oktthin layers 6:0(\/E)) on the core's
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boundaries. That is whig in the existing computer simulations is typicadlgcepted to be
several orders of magnitude greater than its rahlev(see e.g. Glatzmaier and Roberts
(1995, 1996a), Jones et al (1995) Fearn and Marr{2001) who accept E to be in the
range (L0~ t0107).

The value ofE above is obtained for the kinematic viscosity. Tthebulent
viscosity enhances the value of the Ekman numbéh séveral orders of magnitude.
However, even the turbuledf hardly exceeds0™. A question of principle arises here:
whether the flow of the computer simulations carrimit for the relatively large values of
the Ekman number keep valid for its small values® Aet another question. Is it possible
to reformulate the numerical flow problem in a walgich could be free of the difficulties
connected to the resolution of the thin boundayeis? Here we are trying to answer both
questions.

In our further analysis we assume that the forcthénbulk of the core does not
change during fitting of the flow to it. The magiediield and the temperature distribution
evolve together with the flow, changing the magnatid the Archimedean forces. Why do
we think that the process of adjusting of the floan be separated from the change of the
magnetic field and the temperature distribution® Téason is that the flow changes defined
by the enormous (R;*) accelerations in (1.1), are much faster thanettiesthe field and

the temperature.
This argumentation fails for the thin layers wheéhe magnetic diffusion time
r,~8*/n is very small. For the Ekman layer,~(v/2Q)/n. In the case of turbulent

viscosity this time is of order of few hours, if wdoptv,, ~n.

So, when solving the momentum equation we can oetile changes of the field
in the bulk of the core, but we must take them iatcount in the thin layers. Thus we
assume that during the flow fitting, the magnei@ldf remains unchanged only in the
interior of the liquid core, but not in the thindraary and space layers. The magnetic field
in the layers fits together with the flow. Respeely, the boundary conditions (2.4) for the
flow outside the boundary layer on its outer sugface obtained by solving the momentum
and the induction equations into the layer.

Equation and boundary conditions

The momentum equation (1.1) depends on two smadinpeters: the Ekman and
the Rossby numbers. Let us transform this equatividing it byJE:

B‘LV-‘F’DP‘%PXV*F_gwwiEAV, OQ(r)V=0 (2.1,2)

Aot JE

Then new momentum equation depends on other twanpers:

JE =3.5x 105\F and )\:f: Vv :3.3x16\f‘r; (2.3)

n \A

o
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In these estimations we have used the followingupaters from Roberts and
Glatzmaier (2000): the typical value of the westivrift \/, =5x10 ms™* and the value
of the magnetic diffusivity = 2n?s*. As a space scale, the radius of the liquid cotbe
EarthL, =r, =3.4x10 m is used.

We assume that the turbulent viscosity is not smatiany,, =10°m?s™ and
does not exceagl=2n¥ s*.

Then) is situated in the intervaR.3x 10° <A < 3.% 16. For all possible values
of the turbulent viscosity exceedsVE with approximately six orders. Therefore, we will

further assume that (2.1) depends on the only spmadimete{/E .

The smallness of this parameter allows us to tileatflows in the bulk of the
Earth's core as inviscid ones and neglect theVastid) term in rhs of (2.1). The neglecting
of this term reduces the order of the equationthado-slip boundary condition for it must
respectively be replaced by others.

The Ekman suction boundary conditions are obtaibyd solution of the
momentum and the induction equations into the bagnthyer. The suction into the layer
is proportional to the jump of the normal componefitthe curl of the flow in it.
Respectively the boundary conditions for the flowt of the layer in the North and the
South hemispheres take the form:

P M,V (L) =FYE V€LY LMY (L) 5w,
P rV €.) =FVE Y €.,y X (L)% 0]
where r, :]35112\ j RO is the angular velocity of the correspondent bouyndad

v(r1,2,3,¢)=p(r1,2)\/ Jcos 9+ B - & (2.5)

2(cosd+ B
Equation (2.1) and the boundary conditions (2.4)etel on the small parameter

JE and they respectively hint that the flow can barcieed in the form of expansion in
this parameter:

(2.4)

V) =VOM)+VEV O+ PE)= PO (+VEP I (2.6)
The substitution of (2.6) into (2.4) yields to theundary condition of the leading
pr)r ¥ O(r,)=0, p(r,)r.,¥ O(r,,)=0, (2.7.8)
and the next
P ra VA€, =2y Ly L IA ) (2.9)
P LV O L,) =2y Ly LLMA OF ) (2.10)

approximations, where

A® (ra.) =V (0)(r¢1,2) 1,50, (2.11)
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Signs “+” and “-" atr, refer to the North and the South hemispheresérctre.

Instead of such presentation, we can search hera $wlution in terms of values of the
dipole and the quadruple symmetries in the upper Ktorth) hemisphere only. We will call
a scalar field the quadruple one, if it is evemaapect of z. Respectively, the field of the
dipole type is an odd one in respect of z. We eartisat the vector field is of a dipole type,
if its zcomponent is an even function o&nd itss and ¢ components are odd functions.
The vector field of the opposite symmetry, whas®mponent is an odd function n&nds
and ¢ components are even functions, will be calledfigdd of the quadruple symmetry.

Summarizing and subtracting “+” and “-* componenfs(2.7) and (2.8) we
obtain the boundary conditions for the quadrupbevfand the dipole flow of the leading
approximation:

pUrIRVEOE )=0, p(r)r,VI¢ )=0; (2.79, 80)
PRV O )=0, p(r,)r,WP¢ )=0. (2.7d, 8d)

Proceeding analogically with (2.9) and (2.10) oren mbtain the boundary
conditions of the next approximation:

PRIVEE )=y (r)r A O )-yg § WA P ) (2.90)
P(L) LIV EE )=y (rr A O J+yy ) oA Q) (2.100)
PRVYE )=y (r)r A O )-yg § WA P )  (2.9d)
PIL) L IVEE )=y (o JODA O J+yy ) D& P );  (2.10d)

where
AP =V P )2 s, AP )=V, - (2.11q, d)

Finally, we can obtain the boundary condition fopaaticular but important case
of the axisymmetric flow. This flow for both appiimations has a form:

V(s.2)= ——2 xOX(s,2)+ 1, \ (2.12)
p(r)s

Combining (2.7,8) and (2.12) one can obtajﬁ:(o)(rlyz,S)/as =0 where(r,9,0)
are the polar spherical coordinates. From herepllbWis that the streamline function
X(O)(r,a) is constant on the boundaries. Further we wik@t this constant to be zero:

x(r,,9)=0 (2.13)

Eqg. (2.12) also can be transformed to its quadrdjgele form:
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— 1 - — _ 1 — — .
V (S,2)=—=""-x[O%, +1 Veor V. (S,2)= —=—2-x X. + 1 Ve (2.129,d)
4(s,2) o()s Xa T4 Voo a(8,2) oS Xq o Vdo

Then averaging (2.9 g, d), (2.10 q,d) o¥enwve obtain the boundary conditions of
the next approximation for the axisymmetric flow:

-

s,i:hsw:‘yu(r ) MxA Q¢ ) -y ) ,MA G ) (2.140)
1 x(r,,9) _

%ﬁ:vq(r ), MxA Q¢ )+ yL ) ,mMA G s (2.15q)

2

1 0x.(r,9)

%%agbvq(r)rlﬂm D¢ ) -y OA () (2.14d)
1 0%, 9)

2 KT T O, DA T )+ vl ) DA () (2150)

sind  r,09

Here the bar over a quantity meansgtsaveraging value.

Let us assume that both problems of the leadingtl@dext approximations are
resolved and a solution in the form (2.6) is ol#dinAs (2.6) shows, the leading part of the
flow does not depend on the Ekman number. Resmgdgtithe flow depends on the only

parameteh .

Thus we can conclude that in the case of snydl and R, the flow doesn't
depend separately on both these parameters, huborheir relation =/E / R,- It means
that A at small values of/E and R, becomes the universal parameter for the fastingtat
flow as e.g. the Reynolds number in the hydrodyeamiVe noticed in the beginning of
this section that the Rossby number and the sqoateof the Ekman number are both of
order of 10°. However the problem withE~10° is out of up-to-date computer
possibilities. Nevertheless, this problem can batikely easily solved for the greater
values+/E and R,e.0. JE= R, =107?. Our discussion above shows that both flows (with
the sam@ ) must be close to one another. Respectively, y e@mplicated from computer
simulation point of view problem can be replacethwinother, more resolvable, one.

By replacing (2.6) into (2.1), we can obtain the memtum equations of the
leading and the next approximations. However, pidothis, let us consider the equations
for the kinetic energy and the angular momentum.

Kinetic energy

Multiplying (2.1) byV we obtain the equation for the kinetic energyhia bulk of
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the core:
10 pV’_ -OPpV+VE (3.1)
Aot 2 JE

The replacement of (2.6) into (3.1) gives the eiguafor the kinetic energy of the
leading approximation:

-0 DP(O) 6\/(0) +V(0)[E =0 (32)

Equation (3.2) shows that in order to avoid theremms changes of the kinetic
energy in (3.1) the pressure of the leading appnation adjusts in such a way that its work
compensates the work of the force at any locafidren the whole (integrated over the
whole core) force work of the leading approximatieanishes due to the boundary
conditions (2.7, 8):

m VO F d¥F =ﬂ POp(rn IV © ds= (3.3

It follows from (3.3) that the whole Archimedean nkoof the leading
approximation converts into the work of the Loreifitece (and then into the Ohmic
dissipation).

Subtracting (3.2) from (3.1) we obtain the equafionthe kinetic energy in the
next approximation:

19pVY _ _ OO 4 pOT O] 1y @ 3.4
o 2 OfP2p VO + PV O]+v O (3.4)

The small kinetic energy changes are defined by tdwens of the next
approximation. Though both (the leading and thet regxproximations) pressures are
included into (3.4), the last one vanishes due2t@,8) from the equation for the whole
kinetic energy:

0y _
21 rB = =A[ [ cfrv O - ds Ppn v O] (35)

Eqg. (3.5) shows that the kinetic energy of the ileg@pproximation flow changes
due to the work of the force and the pressure ®i¢hding approximation over the flow of
the next approximation. The pressure work is tranmséd into energy flux in the boundary
layer. Its value is defined by the Ekman suctio,@0). This flux compensates the energy
loss into the layer.

Let us imagine that the liquid in the Earth's cams not conductive. Then the
magnetic field and respectively the Lorentz foroeuld be absent. The equation (3.3) in
this case takes a form:

IHV‘O’[H:adEr =0 (3.6)

This means that the flow of the leading approxioratestablishes in such a way that the
work of the Archimedean force is balanced by thating, due to the opposite process.
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Angular momentum

Averaging the¢ component of the momentum equation (1.1) ogewe obtain the
equation for the density of the angular momentulatixe axis OZ
1050V i where =SBt LX Py (1 VEDspV,) (41)
Aot JE A ¢

Here index “m” refers to the meridional (s and z @and %) components of any vector and
X(s,z) is the streamline function of the axisymmetricl@). part of the flow. Eq. (4.1) is,

in fact, the law of conservation of the angular neotam relative axis OZ. This means that
the changes of this momentum in any axisymmetritime are defined only by the

momentum fluxm across its boundaries. This flux, as (4.1) shawssists of three parts.
The first of them,sB | B, /JE, is related to the torque created by the Loreotzef. The

second one;lj/\/E, describes the transportationsirection of the angular momentum
connected with the angular velocityQ of the reference framework. And, finally the last
term of the momentum flux in (4.1), )\Bsm, is simply the flux of the angular mo-
mentum densit)f)sv(p in direction of the meridional flow/ _averaged ovetp . SinceQ »
V,/s, the relation between the third and the secondgés small ~R_ . If neglecting this
term, we obtain m in the leading approximatioq’gﬁ(o) (s,z)= sBﬁ—lj(o).
Respectively, the leading approximation of (4. Blg¢s:

—(©0) _ 0;0)(8.2) s o _
JEOm == ==+0038,8,= 0 (4.2)

Equation (4.2) with boundary condition (2.12) defrthe meridional flow of the
leading approximation. Its streamline function teneasily expressed in terms of integrals
in respect ofz. Integration of (4.2) over between two solid boundaries yields to Taylor
constraint:

[ osB, B(p:(: [ ’F(p):i“’) (5. Zowon S X (5,2, FO E (4.3)

botton Zpotton

Thus Taylor constraint becomes the required califor the existence of the
axisymmetric meridional flow.

Let us integrate (4.2) over the whole volume oflitaid core. Sincq(f(o)(rlyz) =0

we obtain:
[Tsin*8[ ¥ BB, (;.9)- BB, (,9)| ®=0(E) (4.4)

This estimation is interesting to compare to theerad Glatzmaier and Roberts in (1996b)
who write:“... That is, when we integrate the absolute vadfithe moment of the magnetic
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stress‘Bqu"/uo (instead of BrB¢/H) over the inner core boundary, we consistently

obtain values three orders of magnitude greatentirg “.

Combining (2.6) and (4.1) and (4.2) shows that tmange of the angular
momentum is defined by the momentum flux of thet mgaproximation:

—(0)
"SPTV"’ =LA X" Vs |- (4.5)
This equation allows studying the distribution loé tangular momentum in the liquid core.
Let us consider the part of the liquid core boundgé cylinder with radius. The angular
momentum of this volume can be obtained by thegnatiion of (4.5) over it. Taken the
divergence theorem into account we obtain:

B, 9+ 7 6) (4.6)
where
M(s)=[ s dsf “p s\§, (s,z)d (4.7)

is the angular momentum of the volume and
z,=2=,F-5 when S<1| and z,=0 when s>t . (4.8)

The torqueY;; acting on the boundaries and the torgqge acting on the cylinder
surface are defined by the expressions:

Yy(s)= [ s ds, (s, (4.9)
My o(8)=Xan (8.2 FXag (.2 if S< 1 andM, (8)=Xyy(5,2) If € > 1 (4.92)
Ye(e)=¢ " dzE[ VOO (5,20 VO (s,zj- (4.10)

Thus the Earth's core angular momentum distributt(s) is defined by two
torques. The first of theny ,(s) is the torque connected to the boundary flux othbo

boundaries. This change of the momentum is relabedhe transport of the angular

momentum connected to the rotation of the referdrazaework with the angular velocity

1,Q . Function X" (s,2) can be presented as a sg(r‘rl'?(s,z):izl) (s,zyi;l) (s,z of its

odd and even components in respect.ofThe transfer carried out by the flux related to
i;l) is compensated in the North and the South hemisph&herefore, only the transport
connected to the odd functiﬁﬁ), changes the angular momentum. For example

x? =x" (r)(2/r?) is the flux that changes this momentum effectively

The second torqu _ (s) defines the flow velocity which is determined érrhs
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of the force into the liquid core. Therefore wel éathe force torque. It is defined by the
even component of/éo)vqf") in respect oz So the flows of the dipole and the quadruple

types generate this torque effectively. The formede works in the whole core but as
(4.10) shows, it vanishes gt= 1,. So the equation for the angular momentum of thelev

liquid core converts into

a, _,

ﬁj”ds sin® X ( 3)—Ej"da sinax ¢9 (4.11)
dt 20 o« $¥5k ¢

where M, = M(r,).
Taking (2.12) into account we can rewrite (4.1%¥pah the form:

4 _ . 4 .
%:A szo 49 sind cosﬂ{p oWV @9 )—%p OV qa% (4.12)
2
Note that as (4.11) shows, the angular momentutheofiquid core is driven by
two torques acting on ICB and CMB. Respectively same torqueses (with the opposite
signs) act over the inner core and the mantle. Vigkls to equations for their angular
momentum:

do, _ AFn, o . —O

—2L=-=1|d9sinD 9 (4.13)
e 3l Xe ([9)

dw, ~ ANrZen o -

—2=-—2("d9sinD ) (4.14)
R 2, Xa ()

where| and |, are the inertia momentum of the inner core andnaetle, respectively.

By assuming that the mass flux on both boundasied the same order, we obtain
a crude estimation for the relation between theukmgaccelerations of the inner core and
the mantle:

2 3
dwy /0w, P (T ] 7510, (4.15)
dt/ dt  pr,){n

where p, and p, are densities of the inner core and the mantld rans the radius of the
Earth.

The leading approximation problem

The substitution of (2.6) into (2.1) yields to theguations of the leading
approximation:

—pOP® —p1 xV©@+F =0, Opv©@ =0 (5.1,2)

Equation (5.1) is obtained in supposition that tieical time scalet, of the
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processes is of order af, /V,. This supposition fails for the very fast processenen

(V, /L)t A ~JE. The typical time for this fail is very smallt,~(L,/V,) (NE /) =
=(/2Q). It follows from here that equation (5.1) is vaiidthe typical time of the
correspondent processes is much larger than adeveit, » (1/2Q).

The solution of the equations (5.1,2) obeys to ieenormal-flow boundary
conditions (2.7,8) of the leading approximationt us first discuss the non-axisymmetric
flow, V©(r). Using (5.1,2), this flow can be expressed in teohghe force F. The

ambiguity in the meridional components of this fl@an be removed by the boundary
conditions (2.7,8). Then the non-axisymmetric mdrthe azimuthal row1¢\7¢§°) also can

be defined from the continuity equation (5.2). Tiere the non-axisymmetric flow of the

leading approximation is wholly defined by the geob (5.1,2), (2.7,8).

The meridional part of the axisymmetric flow, (s, z)= - ¢, Ip (r)s) ox"” +1¢Vp0) ,is

also defined by (5.1,2), (2.7,8). The stream limaction obeys the equation (4.2) and the
boundary conditions (2.13). These two conditionstiie only functioni(o)(s,z) are over-

constraint for the problem. So an additional candii4.3) has to be satisfied in the liquid
core. Thus the Taylor constraint plays the rolettaf necessary condition to define the
axisymmetric meridional flow.

The azimuthal component of the axisymmetric flosvniot included into the

boundary conditions (2.7,8). Respectively it canipetdetermined from them. It satisfies

the continuity equation identically.] j)(r)1¢pro)(s,z)Eo and therefore cannot be

determined by this equation either. Therefore thenathal axisymmetric flow of the
leading approximation cannot be determined inraek. The next approximation is needed
to define it. But nevertheless an essential pathefaxisymmetric azimuthal flow can be
defined in this approximation.

Dividing (5.1) by 0 and applying the curl operator yields to

VO

=1 (0 D/<0))—|:|x5 (5.3)
P

It follows from here that theg component of the axisymmetric azimuthal flow

can presented as a sum of the forEeF,:sa)F(s,z), and the geostrophicVg =50 (s),

_ —F - —F
flows: Vf,,o) =sw +x0’, where the equation faw takes a form:

DXE; [:D[El‘PxFD (5.4)
p s p

The force in (5.4) consists of the Archimedea®,=rA(r)pC(s,z), and the Lorentz,
FP = R,JxB, parts. Respectively, the axisymmetric force atival flow can be presen-

dw _
0z

» [
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ted as a sum of the Archimedean and the magnedais:aﬁ(s,z)= Zoa(s,z)+aob (s,z. The
equations for both flows can be obtained direatiyrf (5.4):

0w _ A oC(r,9) (55)
0z rsind 09

,b -

00 _p gi2Be=B |, (5.6)
0z " sp

Thus Vf,,o)(s,z) consists of two parts: the force roVV,(Fp, depending ors andz

and the geostrophic ong',?,,(s), depending o only. The first of them is defined by (5.4),

but the second one must be determined in the pgxbaimation.

In conclusion of this section let us emphasize ragazat all the components of the
flow except its geostrophic part can be definethileading approximation. Respectively
the flow of the leading approximation can be présgnas a sum of the force flow
VF(s,p,z) which is defined in this approximation and the mmkn geostrophic flow

1,V =150 (t,S)
VO =Vi(s,,zl, s (t,s (5.7)

The force flowVF consists of the axisymmetric and the non-axisymimearts:

VO =V(5,9,2); V' (s,2)= ——2xT0Y' (s, 2p1, b (5,2 (58)
p(r)s

The axisymmetric part of the meridional force floan be obtained by integration
of (4.2) under the boundary conditions (2.13).altgnuthal part is defined by the equation
(5.4). The non-axisymmetric part of the force floan be analytically obtained from the
equations (5.1,2) and the boundary conditions §2.7This problem also can be solved

numerically.

The force flow establishes instantly by means efspure. Respectively, its time
dependence is defined by the time dependence dibtbe. Thus it has no its own time
dependence. To emphasize this, we do not indlirdéhe list of its variables.

The next approximation problem

In order to obtain the equations of the next apjpnakion, we substitute (2.6) into
(2.1,2) and take (5.1,2) into account. Then we get:

(0) —
% ~VOxOxv©@=-A[OPY+1,xv @], OpV® =0. (6.1,2)

Note that, since the force flow does not dependctly on time, the only non-
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vanishing time derivative in lhs of (6.1) is that the geostrophic velocity. Equations
(6.1,2) could be solved together with the boundaonditions (2.9,10) to find the
geostrophic flow of the leading order approximatiand the flow of the next order
approximation. However, we will see later that gfe®strophic flow interacts only with the
boundary flux. So we need the only equation whichnects the geostrophic velocity and
the streamline function of the next approximatidhis equation which is thg component

of (6.1), can be directly obtained from (4.5), tak(5.7) into account.
Y
R [ESET=VE) (6.3)

In section 4 we have introduced the function M(s¥atibing the distribution of
the angular momentum of the liquid core. We coubthsider also distributions of the
angular momentums in the NortM (s) and in the SouthM (s) hemispheres and

respectively their quadruple/lq(s) and dipoleM,(s) components. The integration of
(6.3) over the same volume as in section 4, givestuations foqud(s):

dM_ (S)
dt

Here the quadruple and dipole angular componentseofngular momentum are
defined by the expressions:

=AY, e (S)* Yqae(S) (6.4)

Mo(s) = [ sds 87 (shoaa (s)d. where U(s)=j: dp () (65

Eq. (6.5) shows that the angular momentum of thelevbody is presented as a
sum of momentums of the liquid cylindrical sheltstating with the angular velocities

wy.4(s). The values’R(s) plays the role of the inertia moments of the she&incew (s)
vanishes outside the tangent cylinder,(s) vanishes here as well.
The torquesy, and Yoo in (6.4) has a form like (4.9) and (4.10)

Y, o(8)= jos g, (s (6.6)

Yourl®)= [ dzp| [ (5.2) (6.7)

q.d
where [ .(S) is defined by (4.92) and, is defined again by (4.8). Since the whole flux
across the cylinder surface between the ridgeddemigs vanishes, the integral

[dzps\ (5,20 V¥ (sF ¢

vanishes as well. Respectively the geostrophiccitglds not included in rhs of (6.7).
By differentiating (6.4) in respect afinside the tangent cylinder one can obtain
equations for the geostrophic angular velocity:
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0u4(S) _ A Xy (5.2)-Xq (5:2)_ 0 (6). s <, (6.8)
it & [(s) [ (s)
068(S) A Xo (5:2)Xq (82)_ 0y (6): sq,  (6.9)
ot & [7(s) [ (s)
where
f(s)= P() Vi V(5,2 _p(r,) VE Vi(s,2,) ZI dzpVF Vi(s,z) s<h  (6.10)

Zl ZZ
Equations for the boundary fluxgéq’d(s, t,) can be obtained from the boundary
conditions (2.14 q,d), (2.15q,d):

—@ 2 _

aXda(SS’E)-'-?q(rl) % (Qfs wl) d( ) o 003 =-W a(S:1)s S<h, (6.11)
—@

aXda(Ssr ) 7q(r2) o (cf wZ) d(rz) 682003 _Wd(S,I’Z), S <rl’ (6.12)

i 200 _
axqa(ss,q)wd(r )05 (u;qs w) V. 0s” wg =-W(s,;), S<h, (6.13)

—(@ 200 _
axqa(:,rz)_yd(rz)as (u:;S w,) - V. 0s® wS =W, S<h, (6.14)

where

W,(s.0)=>] Yo O)r %V S0 +yg() D% ) (6.150)
W,(s.0)= 2] v, € ¥ %V J0)+yg() D% ) (6.150)

Six equations (6.8,9) and (6.11-14) form the systfmequations for the six

—@
quantities f ,(s) and Xq,d(s’ [ ,) inside the tangent cylinder. The angular momentum
M, and respectively the geostrophic flow change duth¢ small fluxes of the angular

momentum into the “cylinder” with radiws That is why both values gradually change with
time. The boundary fluxes restricted by the masssenovation law are controlled by the
pressure acting on the time scale of order of fémutas. That is why the equations (6.11-
14) do not depend on time.

The solution of these equations has to obey sord#i@ual conditions. The first
of them arises due to the requirement of limitatbthez component of the flux at the axis

- —(1)
0z: v :(1/5)(0)((1) /ds). The second one is a sequence of oddned§;ofin respect of
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. —(D .
z. From here it follows thafX, has to vanish at the equator of ICB and CMB. By
summarizing these conditions we obtain:
XSL(S, n,)=0() ats=0, )?S) (sr,)=0 ats=r, (6.16)

Mind that equations (6.8,9) and (6.11-14) have lm®ained for the region inside
the tangent cylinder. Outside it the dipole compun& the geostrophic flow is absent.
Therefore we need only one equation such as (6.8):

068(5)_ A Xo (5,2)_ To(S) | s¥, (6.17)
ot s R(S) 7 (s)

where
Vi V(s,2,)
Z2

O(s)= +§joz dp Vf Vi(s,zy S>h- (6.18)

Eq, (6.17) includes the only boundary flﬁaél) (s,1,) - So in this region we need an
equation only for this component of the flux:

—
0Xa (S, - ¢ (W -w
%‘é)‘yq(rz)%is”=%(s,e)’ s> (6.19)

Thus outside the tangent cylinder we need only égations (6.17,19) instead of
six equations in the region inside it.

Note that equations (6.11-14) and (6.19) include twwknown values: the angular
velocities of the inner core and the mantle. Treeeftwo additional equations (4.13,14)
from section 4 must be added to complete the pnoble

In conclusion of this section let us note thatheblem is simplified drastically in
the model excluding the inner core. Then it is madlto the equations (6.17), (6.19) and
(4.14) with conditions

Xi(5:5)=0() ats=0;  x/'(s,5)=0 ats=p, (6.20)
arising from (6.16).

Below we will discuss some other simple cases eflihw in the inner core of the Earth.

Quadruple flow

If the magnetic field is of the dipole symmetry atie temperature is an even
function of z, then the flow can be a pure quadruple one. Ezas (2.12 q,d) show that

iq and )¢ vanish in this case. Therefore, if we omit in thégtion the indexes “d” and “q”

at the remaining functionid andwg, this cannot lead to an ambiguity. It follows from
(6.10) thatF, = 0. Therefore (6.9) is satisfied identically and {6ad (6.17) keep their
form:

Bulgarian Geophysical Journal, 2006, Vol. 32 69



A.Anufriev, M.Tassev: On the flow in the earth’s iidhjoore

008(s)_A X (5.2)-X" (5,2)_F(S). Sk (7.1)
ot & [(s) U(s)
0r(s)_A X (5.2)_R0) s>r,  (7.2)
at & [O@)  O(s)
Wherg ~

_ p(r) Vquvgp(s,zl)_p(rz) Vi Vio(s,z 2)+2jz dz V';SVW(S ) s<r
d Z, z, L 0P ! (7.3)

Dq(g):_w+3r dzp VL Vi (s,2) s>y

z, S

It follows from (2.5) thatI/d vanishes when the magnetic field is of a dipoleetyAs
(6.15) show, W, vanishes and W, takes a simple form: W,(s,r)= (s/z)

Yo (r) [xV qF( ). Then (6.13,14) are satisfied identically and 1612) transform into

ox" (sq)Jr (r)a @gs w)_ Em, s<r  (7.4)

ai‘“(s,rz)w ()25 @ -w,)_

s
ds a ds _qu(rzy O 5 ) s<r, (79

Thus in the case of quadruple flow, the numbehefunknown variables reduces
to three onesi()(s L) x (s r) and o’(s). Inside the tangent cylinder the equations for
them are (7.1), (7.4) and (7.5). Outside the tahgglinder we have only two unknown
variablesi(l)(s,rz), X(l)(s,g) and @’ (s) which have to be defined from (7.2) and (7.5).
All the solutions have to satisfy the conditionsl@®. The angular velocities, and ¢, of
the inner core and the mantle are defined by thatans (4.13,14).

In the case of the axisymmetric magnetic fiy(g does not depend o¢i . Taking

(5.4) into account we obtai\V, :

W,(s,r)= yq[a":';“q +521(pD]]x|:)q}

Then equations (7.4,5) are simplified:

ax"(s)

. +I/q(s,a)aissz[w‘-’(%a{(sp-aa}-}q(sf)—lDDX—(SD (7.6)
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X8 5 ()2 [ah(9+af (5 -] =Fa(s DL, D (5. (77
ds 27 9s 9 247 2"’ 0

Inviscid flow

The estimate (2.3) shows that for the moleculacosty v =v,, the parameteh

is a relatively small oneA ~1072. That is why the consideration of the problem wath
small A is a problem of physical interest.

As (6.8), (6.9) and (6.17) show, the geostrophievfthanges due to the difference
of the meridional boundary fluxes on the top ane biottom boundaries and due to the

angular momentum connected with the azimuthal fesdecity, 3,7)\7; , transferred by the
meridional force ﬂow,\7sF . It can be assumed, that in the inviscid limitewh - 0, the

first of these mechanisms attenuates and respBctivese equations transform into the
following ones:

9uiy(s) _ Ly (S) SIS 8.1)
at 0@
905(s) _ La(8), SIS (8.2)
at O
0P (s) _ Ha(8) s 8.3)
ot [(s)

where [(s) is defined by (6.10) in terms of the force floweWeclared in section 5 that

the force flow is determined completely by the &wcThe following scheme of solving the
geodynamo problem on this base can be imaginest, Bie can determine the temperature
and the magnetic field distributions at a givenetistep. Then we obtain the force flow
which establishes instantly by means of pressuhés Tlow defines rhs of (8.1-3). By
integrating these equations we obtain new valugheofjeostrophic flow which have to be
used in the next time step (together with the félame, of course).

Note that as (3.5) and (4.11) show, the geostrofibig in the inviscid limit
evolves in such a way that the kinetic energy dmdangular momentum do not change.
The angular velocities of the inner core and thaetteado not change either, as (4.13-14)
show.

The viscous controlled approximation

Turbulence effectively enhances the viscosity aesbectively enhanced as
well. As (2.3) shows, the maximum possible valubs\oat v =7 is of order of3x10'.
Therefore this viscous controlled cage,» 1, is also a problem of physical interest. It is
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additionally an interesting one, because all thepater simulations implicitly suppose that
A » 1. For example, Glatzmaier and Roberts (199%)98 fact carried out their

simulations for E ~10*and R0~10‘5. To compare our estimation with the results of the

computer simulations, we consider in this secti@ndase of large viscosity\ (- o).
If we adoptA » 1 then it follows from (6.3) that the flux ingtbulk of the core

depends ors only: DDJ&(D =0 i(l) :i(”(s). It follows from here that the next
approximation meridional flow has onlyza&omponent:

-
VAR VS vl S ) S O B v P (9.1)
p(r)s p(rs 0s

The space density of the mass fipgr)V"” = (L, /s)@x " (s) /@ s, of this flow does

not depend orz. Respectively the flux coming out from the Ekmager on the bottom
boundary of the liquid core enters without any aeminto the layer on the top boundary at
anys. The averaged oveap boundary condition of the next approximation (209,can be

rewritten in the form:

—@ 0 _ —a

)y yo WX aW V) 9V s 2,) ©.2)
sds Z
—@ 0 _ —

M - iZ?(riz)ml _ V(o) ., W ( )( +2) , (= p(rz)v(Z )(s,izz ))s (9.3)
sds Z

whereW =[0xV .
Outside the tangent cylinders ¢r,), the bottom and the top boundaries are

-z,(s) and z,(s) . Then by equalizing rhs of (9.3) at, (s)and z, (s) we obtain:

(0) _ (0, _ —
Y, , W ¢ ) Zzy( 9 W ?( ») :Z[y(r2)+y(r_2)]w2;- I1< S<r,. (9.4)
Inside the tangent cylinder the bottom and thettopndaries are, (s) and z,(s)

in the upper hemisphere anrdz,(s) and - z(s) in the lower one. Then combining (9.2)

and (9.3) we obtain the equations #® inside the tangent cylinder in the North and the
South hemispheres:

MY oW O, )W HC)
z,

Let us remind that the whole flow of the leadingpgximation has a form:
VO =1V(8)+ L,V (5,2)~ (4, p(NsDX " (5,2¥ V (sp ,z. The only unknown

(Ve@+ye)w,] 0<s<n (95

quantity in this flow is the geostrophic veIocTtTyg =sw’ (s)- The normal component of the

curl takes the formt W@ =rW 4 W ' +W~ © where
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W H SZ(A): X rWF:iHaSZ(A) +4 DXE
s 0s s 0s ¢ p

in the North and the South hemispheres respectively
Thus (9.4), (9.5) are in fact equations for theudaggeostrophic velocit)Z)g (s).
Taking (9.4) into account we obtain equations Ifis talue outside the tangent cylinder

"’32[59(3)“*’2]:9(r-2)r W ¢ )-v ) (1)
sds 2, V() +Y( ) L<s<p (96
VY, WO ) - ) W k)

Z,(Y(r,) + ()
and inside it in the North and the South hemisphere

s Fﬁ(s)“”z] V[0 -]y, W)
sds VDY) | (VL) +YE L)z, L<s<p (9.7)

V(o) W (+2) VD A ML) - W) MO P(L)
(Y(r.) +Y( +2))22 (V€. + W +2))Zl WL )+Y(. )7,

Equations (9.6), (9.7) allow to fineh’ inside and outside the tangent cylinder and
so to define the whole flow of the leading approdion.
In the last part of this section we will discuss #zimuthal flow near the axis OZ.

Any continuous functiond(s,¢, z) near this axis does not depend @n Respectively,I/

vanisheshere and 3 W © takes a simple formyr w © =y W where

s 0s 0z s 0s

0 -0 —(0) —(0 —0
——(©0) _Z0SVy Ve _z0Sw ow —(0) ((m Vq,j
= -—S = w =
s

rw %9 ~2 (2),
0z

As a result, (9.5) in the North and the South hpheses near this axis can be
written as:

VEZ)0 (2,)=VER 0 EZYEZ WY e, ats=0.  (9.9)

Our scale for the magnetic fielglzgnf)luo =1.9mT is a rather big one. So one
can assume that the dimensionless magnetic fielthal: B> << 1 at the boundaries. Then

it follows from (2.5) that\f/(rlvz) :B(rlvz)/\/i. We neglect the small difference betwegn

and 52 and w, in comparison withey and reduce (9.9) to the form:

oo(o)(+z)~—oo (Fz)+tw ats=0 (9.10)

It follows from (5.4) that
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aO)(iZz)‘a)(O)(iZiFsz, Aaf =- szzD{l“’xF(O’iz)} ats=0  (9.11)
7 S P

By combining (9.10) and (9.11) we can the estinthi values of the local
angular velocitya)(s,z) on the outer sides of the layers on CMB and IC8r rtke poles of
the liquid and the solid core:

A+ . —0
~——= 1 Q)'l' y W

F
(12)= 20D ats=0.  (9.12)
2 2

These expressions show that in the case v*nqs'if‘» «, values a)(o)(zz) and

«” (z,) are approximately of the same absolute valuewithitopposite signs. Contours of

the axisymmetric azimuthal angular velocity in g@mputer simulations (Glatzmaier and
Roberts, Fearn and Morrison and others) show thistconclusion is in a good agreement
with the computer results.

From (5.1,2) we can obtain not only the differefetween vaIuesj)(o) on the
poles of the inner and outer core, butzitependence OI)(O)(z) on the axis OZ as well:

6(0)(2) - a)(o)(zl)+m)— z dzl'ii ats=0. (9.13)
sp

z  sdsp

The force in this formula is a sum of the Archimadeand the Lorentz forces.

Respectively, the azimuthal flow strengﬂ)(o)(z) can be presented as a sum of the
components a)a(o)(z) and a)m(o)(z). Taking into account the buoyancy force

F = rA(r)pC(s, z) one can obtain the Archimedean part:sss%)(z) at the axis OZ:

—a(0)

w@2)=0"z)+ cons{C(; Y C(zy j dgssqs} at s=0. (9.13a)

If we assume that the temperature at the axis Quemtds only orr, then we
obtain: (z/s)@ C(r) D s)= (z/1)d C(Y rEI C(r)d . In this casew (z) converts into a
linear function of temperature:

a)a(O)(Z) =a)a(0)(zl)+ COﬂSt[_C(Z )-_C(Z] at s =0. (9.13b)

. . . —a(0)
Since the temperature is a monotonous functian 6@  (z) has to be monotonous as
well.

Discussion

The momentum equation for the flow in the Earthdsec(1.1,2) is commonly
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written in a form which depends on two small partarg the Ekman, E, and the Rossbhy,
R, numbers. We rewrite this equation in a form @ lwhich depends on other two
parameters/E , and A =\/E/Ro. The first of them is small yet but the other ameaot

small and exceeds the first one with approximasetyorders. Boundary conditions (2.4)
depend only on the first paramete@. Therefore we search for the solution of the

problem in the form of decomposition (2.6) in tharameter. Then the flow of the leading
approximation can be presented as a sum of theérgpbi and the force flows:

VO =1 Vs t)+V©

1

0 x0x"” (5,2} VF (% ,: (10.1)
p(r)s

VF(s,o, z):lq,vp (s,z)r

The force flow is defined directly by the force asdtisfies the no-normal
boundary conditions (2.7,8). The non-axisymmetrieridional flow has two,VSF(s,(p, Z)
and \72F(s,<p, z), components which can be defined by these comditam the top and the
bottom boundaries at any cylinder with rad&isThen theg component of this flow,
\~/¢F(s,(p,z), can be obtained from the continuity equation )2.Zhe axisymmetric

meridional flow depends on only one functi@o)(s,z), but it also has to satisfy this
condition on the top and the bottom boundariess&two conditions for the only function
i(o)(s,z) are over-constraint for the problem. That is whyadditional condition (4.3) has

to be satisfied in the liquid core. This conditisrtheTaylor constraint

The force flow establishes instantly by means @aspure. Respectively, its time
dependence is defined wholly by the time dependehtiee force. Thus it does not have its
own time dependence. To emphasize this we do ohtdat in the list of its variables.

The geostrophic flow is defined by two mechanis(®s8,9) concerned to fluxes
of the angular momentum and (6.11-14) related éoBEkman suction into the boundary
layers. Let us discuss primarily the first of them.

As (6.3) shows, the geostrophic flow is defined thyp fluxes of the angular
momentum. The first one.’jz)\i, describes transport is direction of the angular

momentum connected to the angular velogji§ of the reference framework. Moving $n
direction, a liquid parcel conserves tige component of its velocity related to the rotation
of the framework. Respectively the angular velootythe parcel changes and this change
is proportional to the mass fludX associated with the parcel. If we take the cylirstell
between the top and the bottom boundaries quaéhil, thenAy vanishes in the leading

approximation as (4.3) shows. That is why the amguélocity of the geostrophic flow is
defined by the difference of fluxes of the next mpimation (see e.g. the second term in
lhs of (6.8)). Note that the tersfR(s) plays the role of the inertia moment of the cytind
shell.

The other quxﬁsm of the angular momentum in (6.3) is related totthasfer
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of the angular momentum densifgsvw by the meridional flowy averaged oveg. This

flux creates lhs of (6.8,9) and (6.17).

The second (6.11-14) mechanism defining the geplsicoflow is related to the
Ekman suction into the boundary layers. Both thesgephic and the force flows create the
suction, but only the first one can fit togethethathe boundary mass flux, since the second
one is already defined by the force. This fluxastricted by the mass conservation. So it
establishes instantly (only in a few minutes) byanmg of pressure. That is why these
equations do not depend on time, opposite to tremientum” equations (6.8,9).

Defining the force flow from the equations (5.1(8)3) and (4.2) we obtain the
functions which are included in equations (6.8,8)l #6.11-14) for the geostrophic flow.
Then the solution of these equation gives the wiiole.

The Taylor stateis called an assumed solution which does not dkmenthe
Ekman number in the inviscid limiE — 0. The force flow obeying the no-normal-flow
boundary condition does not dependErso only the geostrophic flow, which depends on
the Ekman number E by means »fin (6.8,9) and (6.17), disturbs the Taylor state
conditions.There are two limits, the inviscid one - 0 and the “viscous controlled” limit
A — o when this disturbance is violated and the whales/ftonverts into Taylor state.

The inviscid flow is of a real geophysical intersstice A =/2Qv /V, for the

kinematic values of viscosity is a small oe;107. In this discussion we fix the velocity
scale,V,, by the typical value of the westward drift. If \@dmit that the velocity scale can

change, then we could call it a case of fast flowg case of slow rotation, supposing that
Q can change as well, which could be interestingapect of Venus).

We consider the inviscid limit in section 8. TheogtEophic flow in this limit is
defined by the equations (8.1-3) in which rhs ifird®l by the force flow of the leading
approximation. So the whole flow is determined lbg ho-normal boundary conditions and
thus it does not depend on the Ekman suction eslectively ork. This is in agreement
with the heuristic expectation that viscosity whishsmall enough cannot influence the
flow. The equations (3.5) and (4.11-14) show tha¢ kinetic energy, the angular
momentum of the liquid core and the angular velegibf the inner core and the mantle do
not change in this approximation.

It is important to emphasize that the opposite (flseous controlled) limit is also
applicable in context of the Geodynamo, since &3) (@hows,\ is relatively great for the
turbulent viscosity. This means that the resultshef computer simulations which assume
implicitly A » 1 have a physical meaning. This is not triviahce if we adopt the same
values ofpy andV, for Venus (whereQ) is smaller with two orders of magnitude) thkn

becomes of order of 1 and the viscous controllederical results could be unapplicable to
this planet. But, as mentioned above, these meault applicable for the Earth. Moreover,
being independent ok (and respectively dE) the computer simulated flows convert into
Taylor state and thus describe adequately the iitothie Earth's core. This is also a non-
trivial conclusion, taking into account that thepigal values of the Ekman numbers in
computer simulations exceed these in the Earth, ctygically with ten orders of
magnitude.

In the viscous controlled case the geostrophic floses its own time dependance
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and is defined inside and outside the tangent dgtinby the Ekman suction on the
boundaries (9.6,7). How does this reflect on tlew# Let us consider e.g. the energy
equation (3.5). The time derivative of the kinegicergy, as (3.5) shows, is equal to the
difference between the force work and the layesigétion, multiplied by\ . In the case of
large A this difference tends to be zero. So in the coepsitmulations it is defined mainly
by random computer errors. A large paramelerenhances essentially 16°) their
influence. Therefore one can expect that the timévdtive of the kinetic work must be
very discontinuous. Fig 1 of Glatzmaier and Robgr®95) confirms this conclusion.

As we noticed above, the computer simulated floves & asymptotically large
values of A. For example, Glatzmaier and Roberts (1995,1986p¢t carried out their

simulations forE ~10* and R0~10‘5, i.e. forA ~ 10°. In order to decrease this large value

to the maximal real oneA(~ 30), these authors have to diminBhwith three orders of
magnitude, which is hardly possible for the exigtinomputers. All the more it is
impossible to obtain a computer solution with a lkma implying the kinematic viscosity
in E. That is why we propose to use another way whschaised on decomposition of the
flow (2.6). This implies the creation of a computede for solving the equations presented
here. This code would be free of the difficulti@mcerning the resolution of thin boundary
layers.

The axisymmetric part of the meridional force flman be obtained by the
integration of (4.2) under boundary conditions 8.1ts azimuthal part is defined by the
equation (5.4). The non-axisymmetric part of thecéoflow can be analytically obtained
from the equations (5.1,2) and the boundary coowlti(2.7,8). This problem also can be
solved numerically.

Having evaluated the force flow, we can searchtlier only component of the
flow which is not defined by the leading approxiioat problem, the geostrophic one.
Equations (6.8-14) define it inside the tangeninddr and (6.17,19) do this outside the
tangent cylinder.

The problem is simplified additionally in the ingid limit A - 0. Then we obtain
the only simple equations (8.1-3) for the geostopkelocity, which can be solved
numerically.

The equations (9.6,7) for the viscous controllesecaf largeA can be used for
comparing our results with the numerical solutidret us emphasize here that not only the
whole geodynamo simulations, but also some simmdeats such as “2.5” can be used for
the test.
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Bpry 3aJjavdaTa 3a TCUHCHUETO Ha TEHHOTO AAPO HA 3eMATA

A.Anydpues, M.TaceB

Pe3ome: XuapoJMHAMHUYHOTO YpaBHEHHE 3a TEYHOTO SAPO Ha 3eMsTa, 3aBHCELIO OT JBa
Majku napamerspa (uucnara Ha EKman -E | u Rossby - )e npeoGpasyBano kem dopma,

KOSITO 3aBHCH OT APYTH JIBa IlapaMeTbpa. (\/E u A= JE/R ,) - [IbpBUAT OT TsAX € Bee

oIl MaJTbK, HO BTOPHUSAT naneumasa/E ¢ 61130 mect nopsiabka. ' paHHYHATE YCIOBHS Ha
Teyennero 3aBucaT camo ot ~/E . Tsil kato u YpaBHEHHETO W TPAaHUYHUTE YCIOBHS
3aBHCAT OT €IOWH W CBII MaIbK MapaMeThp JE, nue TBPCUM DEUICHHETO Ha
XUIPOJAMHAMHUYHATA 3a/laya BHB BUJ Ha pa3BUTHE MO TO3M HapaMeThp. [lomyueHute
ypaBHEHHS TOKa3BaT, Y€ TEUCHHWETO B TJIABHOTO NPHOIMKEHHWE B PA3BUTHETO IIO JE
3aBHCH caMO OT mapamerspa A . ToBa o3HauaBa, ue 3a OBP30 BBPTEIUBUTE TEYHOCTH

A =+/2Qv /V, craBa ynuBepcaieH napameThp (KaKBOTO € HAmpUMep YMCIOTO Ha
Peitnonac R=V,L,/V B XuapojuHaMuKaTa), ¥ BCHYKM TEYEHHATa  MOTaT Ja Cce

kinacuuImpaT caMo upe3 Hero. [IbIHOTO TeueHue MoXke Aa ObJe MPEICTABeHO KaTo cyMa
OT JIB€ KOMIIOHCHTH — CHJIOBO M TeocTpoduuHOTO TeueHHUs. [IbpBOTO MOXe na Obae
OTIPEJICNICHO MPSKO Ype3 HHTETpauTe OT cuiata. BTopoTo ce moaynHsABa HA YPABHEHUSTA,
3aBHCCIIM OT MPOU3BOJHATA IO BpeMe Ha reocTpoduynara ckopoct. 1o To3M Ha4yMH
TeOCTPOPUYHOTO TEYCHUE € CANHCTBEHATA YaCT OT LSJIOTO TCYCHHUE, KOATO MMa COOCTBEHO
BpEMEBO MoBeJeHUE. TO eBoMoMpa 3aeJHO C MAarHUTHOTO TOJE€ M C TeMIepaTypHUTE
pasnpezneneHus. [[poTHBOIIONIOKHO HA TOBA, CUJIOBATa YacT Ha TEUEHUETO CE€ ChIJlacyBa C
MOMEHTHOTO CHJIOBO paslpeiesieHue, U HeHHOTO BPeMEBO MOBEACHUE CE OIIPeessl OT TOBa
Ha cwiata. MoraT 1a ObJar pasriefaHd JBa BB3MOXKHHU mpesena; HeBuskoseH (A — 0) u

BUCKO3HO KOHTposupyeM (A — 00 ), B KOMTO TeueHHETO He 3aBucu OT A (= +/E/ RO) u,
cienoBaTenHo, oT E. 3aroBa TeueHueTo ce mpeobOpasyBa B TelTbpoBO CHCTOSHHUE B TE3U
npeaend. B 3aBUCMMOCT OT BHCKO3HUTETa, MAPaMEThPhT A 3a 3EMHOTO SIAPO CE M3MEHS OT
23x107 3a KkMHeMaTWuHHsS BHCKo3uTeT n0 3.3x10' 3a Haif-roasmara CTOWHOCT Ha
TypOYJIEHTHUS BHMCKO3UTET V. =/], KBIETO /] € KOCULMEHT HA MarHuTHaTa Judysus.

Taka u 1BaTa TUMa TEUYECHHs OT TUIA Ha TEeHTBPOBOTO CHCTOSTHUE MOTAT J]a CE peaiu3upar B
3emHOTO s71p0. OT rITeAHa TOYKA Ha KOMIIOTEPHOTO MOJIEIMPaHe BUCKO3HO KOHTPOIUPYEM
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ciiydail € 0coOCHO BakeH, Thi KaTO BCHYKH KOMIIOTBPHH CHMYJIAI[MU M3IIOJI3BAT HESIBHO
npeanonoxenue, ye A » 1. Hanpumep, ['matumaiiep u Pobepre (1995, 1996)pakTudecku
pemaar 3ajaya 3a caydas A ~ 10°. Ilo TakbB Ha4MH TSAXHOTO ACHUMITOTHYHO
(mpu A — o0 ) penieHue ¢ MPUONU3UTEIHO MOAXOMAIIO 38 YCIOBUITA Ha 3EMHOTO SAPO C

(,myp6ynenmno”™) A =3.3x10. ToBa He e TPUBHAIHO, Thil KATO MPH CHIIUTE CTOHHOCTH
HA V (= Vs =n) u V, 3a BeHepa, Kb1eTO Q e c aBa MOpsAABKA MMO-MAJIKO OT 3€MHOTO, A

CcTaBa OT mMOpsAbka Ha 1 W “BHUCKO3HO KOHTPOJMPAHHU' YHWCIICHH pE3yNTaTH, CTaBaT
HENPUJIOKUMH KbM Ta3u tuanera. Hemo nmoseue. bpaeiiku He3aBucuMo oT A (M ChOTBETHO
or E), BU3KO3HO KOHTPOJIHMPYEMHUTE TE€UYEHHs IMPEICTaBiIsIBaT TeirbpoBo cherosaue. U
3aToBa TNpH TYpOYJIIEHTEH BU3KO3UTET TEHIBPOBOTO CHCTOSHHE  aJCKBAaTHO  OIHCBA
TEYEHHETO B 3eMHOTO sApo. ToBa CHIIO € HETPUBHAIIHO 3aKIIOYEHHE, aKO C€ B3eMe I0J
BHUMAaHHE, Y€ XapaKTepPHHUTE CTOHHOCTH Ha EKMaHOBOTO YHCIIO B KOMIIOTHPHHTE
CUMYyJIallii OOMKHOBEHO HAJIBHINABAT TE3W B 3€MHOTO SApPO C AeceT mopsabkal Makap u
KOMITIFOTBPHUTE MOJICITU Ja OIKCBAT 33aJOBOJIUTEIIHO TEYCHUETO C TOSIMO A , Te ca
HETPWIOKUMH KBbM 32 pPEIlIaBaHE Ha 33a[adyaTa ¢ IMO-MaJKH CTOHHOCTH Ha A - U 0COOCHO B
HEBU3KO3UTECHUS TpaHW4YeH ciydaili A - 0, mopamu HEoOXOIMMOCTTa OT YHCICHO
pasperiaBate (pe30JOIHs) Ha THHKUTE TPAaHUYHK ciioese. CMsiTaMe, de Ta3u TPYTHOCT IIe
MOXe na ObJe MpeomoiisHa ChC CH3IABAHETO HAa MAIIMHHU KOJOBE HAa OCHOBaTa Ha
YpaBHEHHATA, IPEJICTABEHU TYK, IPH KOUTO IPOOIEMBT C PE30IONUATa OTCHCTBA .
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