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Abstract. Magnetic field of the Earth is created in the its conductive liquid core by
convective flows. Respectively equations of the thermoconvection are the important
part of the generation problem. Commonly convection in the Earth core is studied in
the Boussinesq approximation neglecting the compressibility of the liquid. However,
compressibility plays the crucial role in this convection and especially in the energy
balance. Without compressibility this balance reduces to the balance of the heat only.
That is why the generalization of BA towards the compressible case seems to be
important. We present here new equations for the compressible convection. The main
diffe3rnce from the Boussinesq equations are as follows. In the heat transport equation
two new terms come into existence, the adiabatic and the Archimedean cooling. The
first of them describes heat supporting the adiabatic temperature distribution of the
reference state. The second one is connected with that part of the heat which is
converted into the mechanic work creating the magnetic field. One new term arises in
the momentum equation as well. This term describes the additional buoyancy due to
compressibility of the liquid. All the new terms depend on the density difference of
liquid between the bottom and upper boundaries of the liquid core. They vanish when
this difference tends to zero. We believe that our equations have to be especially
essential for stars where this difference in their convective zones is enormous.

Key words:  anelastic convection, Boussinesq approximation, dynamo theory,
compressibility.

Introduction

Convection plays a very important role in the life of cosmic bodies such as planets and stars.
Very often it is studied in the Boussinesq approximation (BA) where compressibility is
neglected. However compressibility is essential even for the liquid bodies such as the mantle
or the liquid core of the Earth. That is why the generalization of BA towards the
compressible case seems to be important.
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The equations of BA for the buoyancy force directed along the polar radius can be written
in a form:

Here V is the flow velocity, ρ is density, p is pressure, g is the gravitational acceleration,
is the coefficient of thermal expansion, T is temperature,        is specific heat at constant
pressure, k is thermal conductivity, Q is the rate of heat   addition per unit volume by internal
heat sources.  The Lorentz force is defined by the expressions: 
The viscous force is defined by the tensor of viscous tension: 

It is crucial for BA that the density variations are small and depend on the
temperature only and not on the pressure. Accordingly the buoyancy force depends only on
the temperature.

However the densities and temperatures into stars and planets depend essentially
on position. How does the BA simple picture change if the compressibility is taken into
account?

Let us represent the quantities in the body as a sum of their Reference State values
and their disturbances due to convection:

where ψ is the gravitational potential.
If following a naive point of view we should replace the temperature in BA

equation (1.1) with its expression from (1.4) and then obtain the Arhimedean force in a
form:                                         In the same case the heat transport equation (1.3) would
take a form:

Here the term                        appears. It is often used in the Boussinesq
approximation and is called the  β-term. Does this term have a physical meaning? To check
this let us carry out a thought experiment. Let us imagine a small liquid element emerging
in the liquid. Ascending it carries out work and it cools due to this work. So for existing of
the  convection it is not enough that the temperature of the element is higher than the
temperature of the liquid above it. The element would continue to emerge only if its
temperature after this cooling is not lower than the temperature of its new environment. 

If neglecting the heat diffusion from or into the element its temperature would
change adiabatically. That is the reason for the temperature profile for zero buoyancy force
to be called adiabatic. In the adiabatic profile the ascending element changes its temperature
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fitting it to the adiabatic temperature of its new environment. That is why adiabatic
temperature is not transferred by the flow. Only if the element's temperature is higher than
the adiabatic temperature, a buoyancy force arises acting on it. And this force would be
proportional to the superadiabatic temperature and not to the whole temperature as it follows
from the "naive" point of view.

Thus the same reason, which makes the buoyancy force proportional to the
superadiabatic temperature, leads to lack of the transport of the adiabatic temperature due to
the flow velocity. Nevertheless everybody usually writes correctly the buoyancy force
which is proportional to the superadiabatic temperature, but at the same time many authors
include the transport of the adiabatic temperature in their heat transport equation.

Another new term included in (1.5) is                          For superadiabatic temperature
this term plays the role of an additional heat source.  What is the physical meaning of this
term and must it really be included in the equation? Let us multiply (1.5) by
and integrate it over the whole convective shell. Let us neglect the rate of the heat addition
Q. Then we obtain the internal energy balance in a form: 

where E is the internal energy and        ,       are surface densities of the adiabatic and
superadiabatic  diffusion heat fluxes:

Here indexes 1 and 2 correspond to the bottom and upper boundaries of the shell.
Under time average the lhs of (1.6) vanishes. Averaging (1.6) over time we get:

where       is the adiabatic temperature difference between the upper and the bottom
boundaries and d is the thickness of the shell.

The whole adiabatic heat flux on the upper boundary is larger than that on the
bottom boundary at least because its surface is smaller. The difference between these  is
countervailed by the superadiabatic heat flux from the bottom boundary. That is why the
superadiabatic heat flux decreases from the bottom to the upper boundary and the term 

in (1.5) describes the "cooling" of this heat flux. 

In different papers the heat transport equation for compressible liquid is used in
different forms. How is it possible to compare our results if even the equations we use are
not unified? Above we have tried to estimate what the proper equation should be like. The
goal of this paper is to derive the true equations for the compressible convection and to
check our rather intuitive estimate.         

A. P. Anufriev: Adiabatic approximation in the geodynamo convection

5Bulgarian Geophysical Journal, Vol. 31, 2005, 1-4

ρpC

)(rTk∇⋅∇

( ) ( )( ) ( ) ( )( ),44 22
2

211
2

1 rIrIrrIrIr
t

E asaasa +−+=
∂
∂ ππ

r

rT
krIdS

nr

k
rIrdCE i

i
a

i
ii

i
sa

p ∂
∂

=
∂
∂== ∫∫∫∫∫

)(
)(

4
)(

2
3 ϑ

π
ϑρ

aI saI

(1.6)

(1.7)

( ) ( ) ( ) ( ) ( )2
1

2
21

2
12

2
22

2
21

2
1 4~4444 rr

d

T
krIrrIrrIrrIr aasasa −∆−=− πππππ (1.8)

T∆

( ) ( )rTkC p ∇⋅∇ρ1



 

 

  

A. P. Anufriev: Adiabatic approximation in the geodynamo convection

6 Bulgarian Geophysical Journal, Vol. 31, 2005, 1-4

( )ρρ

ρρρ υ

V

FFV2
V

⋅−∇=
∂
∂

++×Ω−Ψ∇−−∇=

t

P
dt

d b (2.1)

(2.2)

( ) ρπρρ GTP 4,, =∆Ψ= (2.3,4)

( ) ∇⋅+
∂
∂=+∇⋅∇== V,
tdt

d
QTk

dt

dT
C

dt

dS
T p ρρ (2.5)

BV/JEE
B ×−=×∇=

∂
∂ σ

t
(2.6,7)

( ) ,QTk
dt

dlnT
TC +∇⋅∇=

−γ

υ
ρ

(2.8)

psap TpC
⎟
⎠
⎞⎜

⎝
⎛

∂
∂−=⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂== ρ

ρ
αρ

ρ
χ

χρ
αγ 1

,
1

,



Convective values are defined by the convective heat flux: the more heat flux the
more convective quantities. At which value of the heat flux would the relation (2.9) be
violated? To answer this question we can use the estimate for the convective temperature   ϑ
and the flow velocity V:

where      and       are the bottom and upper boundaries of the convective shell,         is the
thickness of the shell,                     is the temperature difference between the boundaries,    

and       are the molecular and the turbulent diffusivities,      is the gravitational
acceleration,          is the angular velocity of the Earth and       is the relation of the whole
heat flux to its adiabatic component. For the Earth's core              . To violate the condition
(2.9) for temperature,   ε must be at least of the order of            where                  is the
enormous Raylegh number. So for the Earth's core (and any planetary) convection relation
(2.9) for the temperature is satisfied with large precision. Estimations for the pressure and
the density give:

For the perfect gas αΤ=1 , but for liquid αΤ<<1 . Even if we neglect the smallness of this
parameter as well the smallness of κ/κΤ, we again obtain incredible relation                  as
a condition for violating of (2.9). Thus we can conclude that (2.9) is satisfied for convection
with large precision. Why are the superadiabatic disturbances so small? The reason is in the
convective heat transport. It is so effective that an enormous amount of heat can be
transported without essential increasing of the temperature.

Let us discuss the RS. The momentum equation for RS reduces to the balance of
the gravitational and the pressure forces. In neglecting of centrifugal force the quantities of
the RS must be spherically symmetric, i.e. depending on r only. So equations (2.1,3,4) take
a simple form:
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These equations are steady and one can expect that RS is a steady solution.
However, generally speaking, it is not true since the heat transport equation essentially
depends on time. Simply speaking, planets are cooled. To have a steady solution this
equation needs heat support. It can be an additional volume heating        or a heat flux on
the bottom. For simplicity let us assume that the additional heating sources in the convective
shell are absent and the time independent heat flux I1 is the only heat source in the (2.5). If
this flux is smaller than the value of adiabatic heat flux at r1 then (2.5) takes the form:

It is easy to check that solution (2.15-17) has the form:

This solution is valid until the temperature gradient on the bottom boundary is smaller than
the adiabatic one. In the opposite case                             convection arises. The main
difference between compressible convection and incompressible Boussinesq one is the
convective region. In the Boussinesq case convection arises in the whole convective shell.
The region of compressible convection is smaller if the heat flux on the bottom boundary is
smaller than the adiabatic heat flux on the upper boundary                          . Indeed it is
well known and it will be shown in the next section that adiabatic temperature is governed
by the equation:

For the Earth's core the gradient of the adiabatic temperature is approximately
constant and so the adiabatic heat flux  Ia(r) increases being proportional to 4πr2. If
I(r1) <  Ia(r2), then some r *exists in which Ia(r*) = I(I(r1) . In the region  r1 < r <r * the
temperature is superadiabatic and convection exists. Region r*< r <r2 is with under
adiabatic heat flux and temperature. Convection is impossible here. Thus generally
speaking, two regions exist in the shell: the convective one in which RS is defined by
equations (2.12-14,19) and the inconvective, governed by (2.12-14,18). Only if 
I(r1) > Ia(r2) the whole shell is convective.

The presence of additional heat sources can change this situation. For example, if
heat flux on the bottom boundary is smaller than the adiabatic one, convection near the
boundary is absent. However additional heat sources can create heat flux which at any level
r* exceeds adiabatic heat flux. Then the region  r1 < r <r * would be inconvective and
region  r*< r <r2 would be convective. May be this picture is realized in the Mantle?
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Convection equations

As it has been emphasized above, convection represents a such type of solution
which can be decomposed into two parts: the stationary Reference State and the small
convective quantities (1.4). Taking into account the appliance to stars and planets we
demand additionally for RS to be radially dependent only. Substitution of (1.4) in (2.1)
yields:

First we extract from this equation large terms of RS. Eq. (3.1) for RS values is
reduced to balance between the pressure and the gravitational forces (2.13). Small
imbalance of these forces leads to convection:

The Convective quantity  ρ consists of two parts: ρϑ depending on superadiabatic
temperature  ϑ and  ρ p depending on convective pressure p :

Respectively

Finally we can write the momentum equation in a form close to that of Braginsky and
Roberts (1995):

The equation of continuity can be obtained from (1.2) if one takes into account that  
does not depend on time:

Here we neglect                           in comparison with                               where
T, L and V are the typical scales of time, space and flow velocity and ρ is the typical value
of the convective density. This neglecting is valid since it is equivalent to obvious
inequality: 
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To obtain the heat transport equation we substitute the same decomposition (1.4)
into (2.5):

The convective quantities as we have shown in Section 2 are much smaller than the
adiabatic ones. So we can decompose (3.5) and neglect the small quadratic terms.

The lhs of this equation represents in fact the time derivative of the entropy of
small liquid element (see (2.5)). It is defined by small convective terms and by the heat
diffusion from the element. The first can be obviously neglected in comparison with lhs.
Diffusion can also be neglected if Peclet number, Pe=VL/k>>1. Here k=k/Cp ρ is the
thermal diffusivity and V and L are the typical space and velocity scales. This condition is
always satisfied for adiabatic RS. Then in the first approximation we obtain:

Two possibilities arise here. In the convective region                 . Then we obtain that the
condition for the existence of convection is the adiabatic temperature distribution of the RS:

where d is the thickness of the shell and D plays the role of non-dimensional gravitational
acceleration.

Another possibility can be realized if the temperature distribution does not satisfy
(3.7) i.e. is under adiabatic. Then free convection is absent: Vr=0 . It does not mean that the
flow is absent in this region. It means that only two-dimensional flows are allowed here. A
liquid element cannot ascend or descend in the under-adiabatic region (if it exists). It means
that Arhimedean force does not include energy into momentum equation.
So in this region energy is only dissipated. This effect has no analogy in incompressible
convection.

Neglecting lhs in (2.8) we obtain adiabatic equation connecting the temperature
with the density:
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From here it follows that

Equations (3.7) and (3.8) allow to estimate drops of the RS temperature and density over the
shell:

It follows from (3.9) that D is the measure of the compressibility in the problem.
The incompressible limit corresponds to            .  We accept the following value of
parameters for the liquid Earth core: α=10−5Κ−1, d=2.26x106m ,Cp=840Jkg-1K-1 . The
preliminary reference Earth model (PREM) of Dziewonski and Anderson (1981) gets values
for g(r) changing from 4.4ms-2 on the inner core boundary (ICB) to 10.7ms-2 on the core
mantle boundary (CMB). So D(r) changes from 0.11 to 0.28. Following Glatzmaier and
Roberts (1996) we accept γ =1.35 .
Taking (3.7) into account we obtain from (3.6) the heat transport equation for convection:

This equation is applicable to both the perfect gas for which α T = 1and for liquid for
which α T << 1 . For liquid this equation can be essentially simplified if we take into
account that due to (2.11)                                                and
and neglect the small pressure and density terms. Then having in mind that                         

we obtain:

where

Let us rewrite (3.11) in a form:
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The superadiabatic temperature and the flow velocity can be divided in two parts: the large
scale values and the turbulent ones with zero mean values:

Averaging (3.13) over a small space scale we rewrite it in a form:

As usual we adopt that the term                            describes the turbulent diffusion and can
be written in a form:

where  kT >>k. We rewrite the term                         by analogy with the previous term in
a form:

We assume that kT does not depend on the coordinates. Then dividing (3.12) by  
we obtain the heat transport equation in its final form:

For simplicity we omit here the bars over V and ϑ.
This equation is in agreement with our intuitive expectations in the Introduction

that β-term is absent. All new comparative to Boussinesq approximation terms through      
(see (3.12)) are proportional to D and vanish in incompressible limi            .Nevertheless
this term can be neglected only if the superadiabatic heat flux on the bottom boundary is
much larger than the adiabatic heat flux on the upper boundary. This condition is not true
for the liquid Earth core.

Boussinesq approximation supposes that the only source of density variations and
consequently the buoyancy force are variations of temperature. However the momentum
equation (3.3) includes a term proportional to the pressure:    

Taking (3.8) into account one can see that this term is of order of D and (3.3) can be
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rewritten in a form:

The deviation of the continuity equation from the equation of incompressibility is also of the
order of D:

Energy balance

Multiplying (3.15) by               we obtain the equation for internal energy      
corresponding to the superadiabatic temperature:

The kinetic energy balance can be obtained by multiplying (3.3) by V:

Finally multiplying (2.6) by  B/µο we obtain the equation for the magnetic energy balance:

where the viscous and the Ohmic dissipations are defined by the expressions:

and is the tensor of viscous tensions.
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The sum of (4.1), (4.2) and (4.3) equations gives
If additional heat sources are absent then all changes of the energy of a liquid

element can be only due to the flux across its walls. This means that the rhs of (4.4) has only
to be a divergence. So Q=Qv+Qj .
The integral form of the balance equations can be obtained integrating (4.6) over space.
Integrating over volume of the outer core we obtain

where the brackets          denote averaging over angles          :

and E is the whole energy of the core:

E = E9 +Ek + Em

Here Esa = Em +Ek are the whole internal, magnetic and kinetic energies of the liquid
core:

and  I(r) is the radial component of the surface density of the energy flux across the
boundary. The whole energy flux contains a lot of terms but the main part of them vanishes
on the boundaries due to the no-slip boundary condition V(r1,2)=0 . We can additionally
simplify the situation if we expand the integrating volume of the magnetic energy to the
whole space. Since decreases faster than r-2on the infinity, the flux of
electromagnetic energy vanishes and the energy flux taking part in the energy balance is
reduced to adiabatic and superadiabatic heat flux only:

Eq. (4.5) tells us that the whole energy changes only due to the difference between
the two heat fluxes on the boundaries. The heat flux enters across the bottom boundary and
leaves the volume through the upper boundary. This picture is very similar to that described
by (1.6) of the Boussinesq approximation. However there is a crucial difference between
(1.6) and (4.5) in the lhs of these equations. In (1.6) this is only internal energy, but in (4.5)
this is the whole energy including internal, kinetic and magnetic energies. This could be
expected since Arhimedean work supporting the kinetic and the magnetic energies is of
order of D and speaking strictly it vanishes in the incompressible limit               .

To make our statement clearer we slightly simplified it neglecting the movement of
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the boundaries. Having in mind the appliance to the Earth core we also have to take into
account the rotation of the mantle and the inner core. Then the kinetic energies of both
bodies have to be added to the whole energy. And also the viscous energy flux connected
with the non-zero velocity on the boundaries must be taken into account. 

(Velocity would be                 , where r is a radius vector on the point situated on
the boundary and  is its angle velocity).

Another difficulty is of a more principal character. In computer simulations the
momentum equation implies to be averaged over turbulent scales since viscous scales are
too small to be resolved.  It means that the Arhimedean work in the momentum equation is
created only by the averaged superadiabatic temperature and has a form:                       .
However the same work in the equation for the internal energy comprises one extra term  

. That term is not canceled when summing up the equations of partial energies
(4.1-3) to obtain the equation for the whole energy.

This means that a sub-system of turbulent eddies has to be taken into account. Its
energy balance equation takes a form:

This equation has been obtained in assumption that the magnetic scales are
resolved by computer simulation and respectively the magnetic terms must not be included
in the turbulent energy. 

This equation must be added to (4.1-3) to eliminate the problem with the additional
Arhimedean work. Additional turbulent dissipation has to be included in Q.

Discussion

Let us rewrite the convection equations in a slightly changed form
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and discuss the results obtained.
Boussinesq approximation supposes that the only source of the density variations

and consequently the buoyancy force are variations of temperature. In our Adiabatic
approximation the momentum equation (5.1) includes a term proportional to pressure. If
p<0 i.e., the whole pressure is smaller than the equilibrium one, then density increases and
the correspondent buoyancy force is positive. It is negative in the opposite case. Eq. (5.2)
shows that an ascending liquid element increases its volume and decreases it when traveling
down. Both these effects vanish in incompressible limit             .

Convection exists only when the temperature of the Reference state is the adiabatic
and not an arbitrary one as it is sometimes assumed in some papers. This adiabatic
temperature is defined by the equation (3.7) which generally speaking, does not satisfy the
condition of the constant adiabatic heat flux                        . That is why in order to be
stationary RS needs an energetic support with space density equal to                         .This
heat is taken from the superadiabatic heat flux.  That is why it plays the role of cooling in
(5.3) (the fourth term in rhs). This cooling is not negligible since it eats up about 3/4 of the
superadiabatic heat flux.

As this has already been said in the Introduction, a rising liquid element changes
its adiabatic temperature to the adiabatic temperature of its new environment. That is the
reason why the large β-term which in some papers is taken as equal to                         is
absent in (5.3).

The driving force of the convection is the buoyancy one. It compensates the
viscous and the Ohmic dissipation. It takes energy for this from the superadiabatic heat flux
cooling it. The term describing this cooling which can be called Arhimedean cooling is the
third term in the lhs of (5.3). To understand deeper its role let us integrate the kinetic energy
equation over space and average the equation obtained over time. As a result we obtain that
the whole Ohmic and viscous dissipations are compensated by the whole work of the
Arhimedean force. The same role in this equation is played by the third term in lhs (5.3).
Without this term dissipations would convert into additional heating source in the heat
transport equation in contradiction to the energy law conservation. That is why we cannot
use the heating due to these dissipations in Boussinesq approximation and on the contrary
we cannot neglect them in the present approach. Since the locations of the Ohmic heating,
generally speaking, do not coincide with the locations of the Arhimedean cooling we neglect
some interesting dynamics using the Boussinesq approximation.

The last cooling term is the second one in the rhs of (5.3). The momentum averaged
over turbulent scales describes the viscous dissipations connected with the turbulent
viscosity. This dissipation leads, as we discussed above, to the Arhimedean cooling.
However it does not describe the dissipations on the non-resolved turbulent scales and the
correspondent cooling in the heat transport equation. The second term in (5.3) describes just
this cooling which can be called the turbulent cooling.

This cooling is not suitable for numerical simulations since it disturbs the energy
balance for the averaged over turbulent scales values. We have discussed this in the previous
chapter. We think that a rather intuitive reason exists which allows us to neglect this term.
Let us discuss it starting from another topic.

Magnetic field is supplied by energy at one location but it can spend this energy by
the Ohmic dissipations in other location which can be at a long distance from the first one.
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That is why Ohmic dissipations do not compensate locally the energy producing the field in
the equation (5.3). They compensate themselves only integrally in space and time.
Turbulence is local in its nature. That is why it can be assumed that turbulent eddies spend
their energies at the same place where they get them from. Of course there is a time
difference between getting and spending of the energy but this time interval is rather small
in comparison with the typical times of the convection. Then under averaging over turbulent
time scale both the turbulent cooling and turbulent heating are cancelled in (5.3). This
assumption is equivalent to averaging of (4.9) over turbulent space and time scales after
which this equation is reduced to the balance between the Arhimedean work and the viscous
dissipation:

Thus the convection equations do not depend on the turbulence (except the
turbulent transport coefficients, kT and vT). Note that this term cannot arise at all in the
thermodynamics approach of Bragynsky and Roberts (1995) (see also Glatzmaier and
Roberts (1995)) since entropy does not diffuse and these authors use the turbulent
diffusivity.

The commonly used Boussinesq approximation, without Adiabatic cooling and
correspondently Adiabatic heat flux (see e.g. Glatzmaier and Roberts (1995)) is in fact the
Boussinesq approximation with uniform "Adiabatic temperature". It follows from (3.9) 
(                      )  that for this incompressible case and consequently Arhimedean
force vanishes from the momentum equation (5.1). Together with the Arhimedean force
Arhimedean work and respectively the kinetic and the magnetic energies are of order of
O(D)comparatively to the internal energy.  So they are absent in the Boussinesq energy
equation (1.6).

How can an existing Boussinesq code be fitted to the presented equations? The
main term which has to be taken into account is the Adiabatic cooling in the heat transport
equation. Of course the β-term must be removed if it exists in the code. These are absolutely
required changes but they are not complicated ones.

It may seem as a paradox but the direct effects of compressibility, the pressure term
in (5.1) in the form                    and the continuity equations                        , are not so
obligatory. We can say that  D~1/4 is small enough to neglect their differences with the
incompressible values         and                 .

Arhimedean cooling is the term of order O in the heat transport equation.
Nevertheless it is desirable for it to be taken into account in the program due to two reasons.
The first of them is that together with this term we must consider the dissipations (mainly
Ohmic) which can introduce an interesting dynamics in the convection especially in the
currents layers.

The other reason is connected with the possibility to check the work of the code.
Even the Boussinesq energy balance gives this possibility. We can evaluate the lhs and rhs
of (1.6) and compare them. Their coincidence confirms that the solution is correct. However
in the Boussinesq's case we check the solution only of the heat transport problem which is
almost trivial since it includes the only equation. If we test the whole energy balance in form

0→D
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(4.5) we check the solution of the whole problem with all equations and boundary
conditions.

To realize this idea let us introduce a new function    , the Imbalance:

According to (4.5)        has to vanish.  This equality however is not trivial and is
only   satisfied by the true solution of the problem. That's why the Imbalance, Y, can be used
as a check of the solution.

In computer simulations the equality   = 0 cannot be achieved.  Even for correct
codes there are errors due to truncations, relatively large space and time steps, and so on.
So   always has a non-zero value. If however this value is small (comparative to the main
term included in     ) the solution is good.

It is natural to normalize the Imbalance by the Adiabatic heat flux  
which is a typical large value included in the energy flux I. To

use the Imbalance to test the numerical solution we must evaluate numerically the time
derivative from the total energy E and values of energy fluxes on both boundaries.  Then we
evaluate the Imbalance and normalize it by Ia(r2). If its value is small (say smaller than
0.01) then the solution is good. (It is important to emphasize that just including the terms of
the first order in D expansion makes the Imbalance interesting for the problem. In the main
approximation it is reduced to almost trivial heat flux balance.)

SEDI's benchmark proposes the method of testing results based on their
comparison at the end of the fixed time interval, whereas Imbalance can be applied
continuously at every instant. By comparison we cannot estimate the truncation and time
and space steps errors - they will be the same in different codes. Imbalance estimates the
solution of the problem including all possible errors. The Imbalance also allows us to
gradually complicate the problem by including new terms in the equations and in the energy
balance. Finally by evaluating the Imbalance we test our own solution independent of
others. That is why we assume that the Imbalance calculation (few surface and volume
integrals) is not a very high price to pay for knowledge about our solution.  It was used by
Anufriev, Cupal and Hejda (1993) in their code forαω-dynamos and it helped them to
exclude many errors. It was interesting to note enhancement of the Imbalance, when a thin
current layer arises in the solution.

References

Braginsky, S.I. and P.H. Roberts, 1995. Equations governing Earth's core and the geodynamo,
Geophys. Astrophys. Fluid Dynam., 79, 1-97.

Dziewonski, A.M. and D.L. Anderson, 1981. Preliminary reference Earth model, Phys. Earth Planet.
Inter., 25, 297-356.

Glatzmaier, G.A. and P.H. Roberts, 1995a. A three-dimensional convective dynamo solution with
rotating and finitely conducting inner core and mantle, Phys. Earth Planet. Inter., 91, 63-75.

A. P. Anufriev: Adiabatic approximation in the geodynamo convection

18 Bulgarian Geophysical Journal, Vol. 31, 2005, 1-4

( ) ( ) ,44 1
2

12
2

2 rIrrIr
t

E ππ −−
∂
∂=ϒ (5.5)

ϒ

ϒ

ϒ

ϒ

( ) WrIr a 12
2

2
2 105~4 ×π



Glatzmaier, G.A. and P.H. Roberts, 1996a. An anelastic evolutionary geodynamo simulation driven
by compositional and thermal convection, Physica, D., 97, 81--94.

Landau, L.D. and Lifshitz E.M. 1986. Hydrodynamic. Moscow, "Nauka" (in russian).
Moffatt, H.K., 1978. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge UK:

University Press.
(Received 20.02.2003; accepted 2006)

¿‰Ë‡·‡ÚË˜ÌÓÚÓ ÔË·ÎËÊÂÌËÂ ÔË „ÂÓ‰ËÌ‡ÏÓÍÓÌ‚ÂÍˆËˇÚ‡

¿. œ. ¿ÌÛÙËÂ‚

–ÂÁ˛ÏÂ. Ã‡„ÌËÚÌÓÚÓ ÔÓÎÂ Ì‡ «ÂÏˇÚ‡ ÒÂ Ò˙Á‰‡‚‡ ÓÚ ÍÓÌ‚ÂÍÚË‚ÌË ÚÂ˜ÂÌËˇ ‚
ÌÂÈÌÓÚÓ ÂÎÂÍÚÓÔÓ‚Ó‰ˇ˘Ó ÚÂ˜ÌÓ ˇ‰Ó. —˙ÓÚ‚ÂÚÌÓ Û‡‚ÌÂÌËˇÚ‡ Á‡ ÚÂÏË˜Ì‡Ú‡
ÍÓÌ‚ÂÍˆËˇ  Ò‡ Ò˙˘ÂÒÚ‚ÂÌ‡Ú‡ ˜‡ÒÚ ÓÚ ÔÓ·ÎÂÏ‡ Á‡  „ÂÌÂ‡ˆËˇÚ‡ Ì‡ ÚÓ‚‡ ÔÓÎÂ.
Œ·ËÍÌÓ‚ÂÌÓ  ÍÓÌ‚ÂÍˆËˇÚ‡ ‚ ÚÂ˜ÌÓÚÓ ˇ‰Ó ÒÂ ËÁÛ˜‡‚‡ ‚ ÔË·ÎËÊÂÌËÂÚÓ Ì‡
¡ÛÒÒËÌÂÒÍ (¡œ), ÔÂÌÂ·Â„‚‡˘Ó Ò‚Ë‚‡ÂÏÓÒÚÚ‡ Ì‡ ÚÂ˜ÌÓÒÚÚ‡. œÓÒÎÂ‰Ì‡Ú‡, Ó·‡˜Â,
Ë„‡Â Ò˙˘ÂÒÚ‚ÂÌ‡ ÓÎˇ ‚ ÍÓÌ‚ÂÍˆËˇÚ‡ ‚ ÁÂÏÌÓÚÓ ˇ‰Ó Ë ÔÓ-ÒÔÂˆË‡ÎÌÓ ‚
ÂÌÂ„ÂÚË˜ÌËˇ ÏÛ ·‡Î‡ÌÒ. ¡ÂÁ ÓÚ˜ËÚ‡ÌÂ Ì‡ Ò‚Ë‚‡ÂÏÓÒÚÚ‡ ÚÓÁË ·‡Î‡ÌÒ ÒÂ Ò‚ÂÊ‰‡
Ò‡ÏÓ ‰Ó ·‡Î‡ÌÒ‡ Ì‡ ÚÓÔÎËÌ‡Ú‡. ≈ÚÓ Á‡ÚÓ‚‡ Ó·Ó·˘‡‚‡ÌÂÚÓ Ì‡ ¡œ Í˙Ï ÒÎÛ˜‡ˇ Ì‡
Ò‚Ë‚‡ÂÏ‡Ú‡ ÍÓÌ‚ÂÍˆËˇ, ËÁ„ÎÂÊ‰‡ ‡ÍÚÛ‡ÎÌÓ. ¬ Ì‡ÒÚÓˇ˘‡Ú‡ ‡·ÓÚ‡, ÌËÂ
ÔÂ‰ÒÚ‡‚ˇÏÂ Û‡‚ÌÂÌËˇÚ‡ Ì‡ ÍÓÌ‚ÂÍˆËˇ Á‡ ÒÎÛ˜‡ˇ Ì‡ Ò‚Ë‚‡ÂÏ‡Ú‡ ÚÂ˜ÌÓÒÚ. ¬
Ò‡‚ÌÂÌËÂ Ò ¡ÛÒËÌÂÒÍÓ‚ÓÚÓ ÔË·ÎËÊÂÌËÂ ÚÂÁË Û‡‚ÌÂÌËˇ ÔÓÍ‡Á‚‡Ú ÌˇÍÓÎÍÓ
ı‡‡ÍÚÂÌË ÓÒÓ·ÂÌÓÒÚË. ¬ Û‡‚ÌÂÌËÂÚÓ Á‡ ÚÓÔÎËÌÂÌ ÔÂÌÓÒ ‚˙ÁÌËÍ‚‡Ú ‰‚‡ ÌÓ‚Ë
˜ÎÂÌ‡, Ì‡Â˜ÂÌË ÓÚ Ì‡Ò ‡‰Ë‡·‡ÚË˜ÌÓÚÓ Ë ¿ıËÏÂ‰Ó‚ÓÚÓ ÓıÎ‡Ê‰‡ÌËˇ. œ˙‚ËˇÚ ÓÚ
Úˇı ÓÔËÒ‚‡ ÚÓÔÎËÌ‡, ÔÓ‰‰˙Ê‡˘‡ ‡‰Ë·‡ÚË˜ÂÌ ÔÓÙËÎ Ì‡ ÚÂÏÔÂ‡ÚÛÌÓÚÓ
‡ÁÔÂ‰ÂÎÂÌËÂ Ì‡ ‡‰Ë‡·‡ÚË˜ÌÓÚÓ ÂÙÂÂÌÚÌÓ Ò˙ÒÚÓˇÌËÂ. ¬ÚÓËˇÚ ˜ÎÂÌ Â Ò‚˙Á‡Ì
Ò Ú‡ÁË ˜‡ÒÚ ÓÚ ÚÓÔÎËÌ‡Ú‡, ÍÓˇÚÓ ÒÂ ÔÂ‚˙˘‡ ‚ ÏÂı‡ÌË˜Ì‡ ‡·ÓÚ‡, Ò˙Á‰‡‚‡˘‡
Ï‡„ÌËÚÌÓ ÔÓÎÂ. ¬ ıË‰Ó‰ËÌ‡ÏË˜ÌÓÚÓ Û‡‚ÌÂÌËÂ Ò˙˘Ó ‚˙ÁÌËÍ‚‡ ÌÓ‚ ˜ÎÂÌ. “ÓÁË
˜ÎÂÌ ÓÔËÒ‚‡ ‰ÓÔ˙ÎÌËÚÂÎÌ‡Ú‡ ¿ıËÏÂ‰Ó‚‡ ÒËÎ‡ ‰ËÂÍÚÌÓ Ò‚˙Á‡Ì‡ Ò˙Ò
Ò‚Ë‚‡ÂÏÓÒÚÚ‡ Ì‡ ÚÂ˜ÌÓÒÚÚ‡. ¬ÒË˜ÍËÚÂ ÚÂÁË ÌÓ‚Ë ˜ÎÂÌÓ‚Â Á‡‚ËÒˇÚ ÓÚ ‡ÁÎËÍ‡Ú‡ Ì‡
ÔÎ˙ÚÌÓÒÚÚ‡ ÏÂÊ‰Û „ÓÌ‡Ú‡ Ë ‰ÓÎÌ‡Ú‡ „‡ÌËˆË Ì‡ ˇ‰ÓÚÓ Ë ËÁ˜ÂÁ‚‡Ú, ÍÓ„‡ÚÓ Ú‡ÁË
‡ÁÎËÍ‡  ÍÎÓÌË Í˙Ï ÌÛÎ‡.

A. P. Anufriev: Adiabatic approximation in the geodynamo convection

19Bulgarian Geophysical Journal, Vol. 31, 2005, 1-4



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


