Review on the mathematical models for conventional seismic sources. Part II: Dipoles with a moment, double couples without a moment and some combinations.
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Abstract.  The present review has two parts and it is meant to offer a convenient variant for unified presentation of the known formulas for the basic conventional source models used for determining the focal mechanism of seismic events. In the practice, still arise some problems, as the formulas for the different source models are originally derived in non uniform coordinate systems. Furthermore, the notations used by different authors vary considerably, a fact, which introduces some supplementary obstacles. A limited number of papers are describing the subsequent “evolution” of source models, for example, starting from a simple concentrated force to derive the more compound models of couples with a moment and without a moment. The predominant number of the published solutions do not consider the general case of forces acting in arbitrary directions. Taking into account the above mentioned circumstances, in the present paper a standard right hand coordinating system (rectilinear Ox1x2x3 or spherical OR(() is considered. In addition, within the system Ox1x2x3 an arbitrary oriented coordinate system O((( is introduced. The later is used to present the source models in the general case when the acting forces are arbitrary oriented in the space. The systems Ox1x2x3 or OR(( should also be treated as “geographic” when axis x1 is oriented to N, axis x2 to E and x3 along the vertical Z towards the Earth’s center (nadir). Thereby oriented coordinate systems Ox1x2x3(ONEZ exactly correspond to the standard ones used in practice for obtaining the fault plane solutions. Considering this, the formulas for displacement components of models on the axis (, ( or (, namely for simple concentrated force and linear couple (part I) and dipole with a moment and double couple without a moment (part II) are evaluated. From these formulas it is easy to obtain the transformations in spherical coordinates, as well as to separate the displacement components of the longitudinal (P) and the shear (S) waves. 
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	The present part II of the paper is a continuation of the preceding part I in which some introductory considerations are given as well as the basic formulations and expressions for concentrated force, linear dipoles and some combinations are presented. As stated in part I, the selected principal sources used in this review are listed at the end of the paper.


4. Dipole with a moment


	Unlike the dipole without moment the couple of forces with moment becomes attached to two mutually perpendicular axes – an axis along which the forces act and an axis of the arms of the forces and the corresponding points of application. Therefore, the dipole with moment is a system of two concentrated forces, equal in size and directed opposite, applied to two infinitely near application points on an arms perpendicular to the directions of their operation. In Fig.6 an example of a normal dipole is shown in which the forces are directed along the positive and negative directions of axis x1, the arms are on axis x2 with application points õ2=((/2, accepting ( for an infinitely small in value quantity. 
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Fig.6.  Normal dipole with a moment composed	Fig.7.  Normal dipole with a moment


by forces acting along axis x1 and axis x2.	composed by forces acting along axis ( and 	axis (


	It is immediately realized that such a system will have a moment of rotation around the third axis x3. Fig.7 also shows a normal dipole, oriented along an arbitrary axis ( and arms on axis (, with the moment round axis ( ((((((). The active nodal plane is perpendicular to the axis on which the dipole arms lie (plane x2=0 in Fig.6), and the auxiliary nodal plane is perpendicular to the axis of the forces (plane x1=0 in Fig.6). For forces directed conversely towards the origin of the coordinate system the dipole will be reversed. From physical considerations the dipole with a moment is treated as one of the possible mathematical models of an earthquake source.


	It is originally proceeded from the particular case (Fig.6) when one force is acting along the positive direction of axis x1 with an application point (0,(/2,0) and the other force is along the negative direction of axis x1 with an application point (0,-(/2,0). The displacements ui(x1,x2-((2,x3) caused by force f(t) along the positive direction of x1 can be found from (11) for k=2 and replacing x2 by x2-(/2. By analogy, the displacements caused by the force f(t) along the negative direction of x1 will be -ui(x1,x2+((2,x3). In the case instead of f(t) the moment MDM(t) is introduced, where MDM(t)=(f(t) (Gotsadze, 1957, Kasahara, 1981). It is shown that the product (f(t), which here has the sense of a rotating moment of the dipole, should remain constant (slowly variable) when ((0 and f(t) grows. Then similarly to (28), the displacement components uDMi (i=1,2,3) for the couple of forces with moment along axis x1 and arms on x2, is determined by the boundary transition (Kasahara K., 1981)


	�EMBED Equation.3���	(64)


After differentiating ui from (14) and taking into account equation (12), all terms proportional to 1/Rn for n(2 for a large enough distance R can be neglected. Then for the displacements uDMi of the couple of forces with a moment along axis x1 and arms on x2 (Fig.6), the general expression is obtained


	�EMBED Equation.3���  ,	(65)


where the different components are respectively


	�EMBED Equation.3���	(66)


and where by analogy with (31) the following notations are introduced


	�EMBED Equation.3���        �EMBED Equation.3���  ,	(67)


considering that  �EMBED Equation.3���  and  �EMBED Equation.3���.


	The comparison of (65) with (59) immediately shows that in the part for P wave uDMi and �EMBED Equation.3��� coincide with an accuracy to a constant multiplier. Therefore the field of P wave of a normal and reverse dipoles without a moment and of dipole with a moment will have the similar distribution in space.


	When the dipole lies along one of the coordinate axes xk (k=1;2;3) with arms on axis xl (l=1;2;3, l(k), then in (64) the derivatives will be -(ui/(xl (i=1,2,3), and by analogy with (65) the expressions for the corresponding displacement components can be written (k=const, l=const, k(l)


	�EMBED Equation.3��� .	(68)


	When the dipole with moment is directed along an arbitrary axis ( and has arms on axis ( (((() as shown in Fig.7, the direction cosines of the axes ( and ( will respectively be ñi( and ñi(. Bearing in mind that õ(=ñj(õj and õ(=ñj(õj (j=1,2,3), similarly to (68), the generalized equation for the displacement components uDMi (i=1,2,3) of dipole with moment on arbitrarily oriented mutually perpendicular axes ( and ( can be written in the form


	�EMBED Equation.3���  .	(69)


The corresponding to (34) components for P and S waves now will be


	�EMBED Equation.3���	(70)


If ((õk and ((õl from (69) immediately (68) is obtained, and for k=1 and I=2 equations (65) and (66) can be received


	Like (35) the components of the displacement uDMn for a dipole with a moment in spherical coordinates at n=1((R),2(((),3((() will be


	uDMn=uDMjcjn       (n,j=1,2,3)  ,	(71)


Taking into account equations (17)-(20), from (69) is found


	�EMBED Equation.3���  ,	(72)


where the components uDMR, uDM( and uDM( are as follows


	�EMBED Equation.3���	(73)


It is immediately seen that the component uDMR is the result only of P wave, and the components uDM(and uDM( are connected with wave S.


	By repeating the procedure for obtaining the above equations, from (68) for a dipole along axis k and I is found


	�EMBED Equation.3���  ,	(74)


where the different components are as follows


	�EMBED Equation.3���	(75)


Substituting k=1 and I=2 and taking into consideration the basic equations (17)-(19), the displacements for the dipole along x1 and arms on x2 can be obtained


	�EMBED Equation.3���	(76)


where the components by R, ( and ( taking into account (67) are


	�EMBED Equation.3���


	�EMBED Equation.3���	(77)


	�EMBED Equation.3���  .


As said, for a dipole along axis x1 and arms on axis x2 the active nodal plane is the plane x2=0. The auxiliary nodal plane is respectively x1=0. This is confirmed by the character of the radiated wave field and the quadrant distribution of the signs in accordance with the  equations (77). In the horizontal plane õ1õ2 ((=(/2) the component of the P wave uDMR is positive (sign +, compression) for 0<(<(/2 and (<(<3(/2 and has maximal values at (=(/4 and (=5(/4 (Fig.8). The same component is with a negative sign (dilatation) for (/2<(<( and 3(/2<(<2( and has extreme values at (=3(/4 and (=7(/4. The component uDMR vanishes for (=0 (() in the plane x2=0 and for (=(/2 (3(/2) in the plane x1=0. In the horizontal plane the component uDM( of the S wave is canceled, and the other component uDÌ( has extreme values for (=(/2 and (=3(/2 and vanishes for (=0 (() in the plane x2=0. As seen from Fig.8, the extremums of the radiated P and S waves are shifted at (/4 radians (450).
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Fig.8.  Displacement field of dipole with a moment in the plane x1x2 ((=(/2) for component UDMR of P wave (left) and component UDM( of S wave (right).


	An interesting combination of two dipoles with moment is the model for a plane center of rotation. The model can be obtained as a combination of one dipole along x1 and arms on x2 and second one along -x2 and arms on x1 (in more general cases as a sum of dipole along xk with arms on xl and dipole along -xl and arms on xk, or as a sum of dipole along axis ( and arms on axis ( and dipole along -( and arms on (). Following the equation (69), the expression of a dipole along axis -( and arms on axis ( (((() can be written


	�EMBED Equation.3���


and summing it up with (69), the equation for the displacement components �EMBED Equation.3��� of the plane center of rotation is reached


	�EMBED Equation.3��� ,	(78)


whence it is immediately established that the rotation center can radiated only S waves. This idea is used in the construction of some artificial sources for the generation of shear waves.


	The transition from axes (,( to axes xk,xl and õ1,õ2 leads to equations


	�EMBED Equation.3���          �EMBED Equation.3���  .	(79)


It is easily checked that after presenting the right-hand equation in spherical coordinates, only the component �EMBED Equation.3��� of S wave remains


	�EMBED Equation.3���  .	(80)


The model of plane rotation center can be used in combination with other point sources for modeling specific processes observed in the near zone around the earthquake source.


5. Double dipole without a moment


	The double dipole without a moment is accepted as one of the most realistic point models of the earthquake sources of a tectonic type. This model is a combination of two dipoles with a moment, but in such a way their moments are mutually balanced. This is reached by a sum of dipoles with moments with exchanged axes of the forces and their arm. In Fig.9 such a classical double dipole is shown. It is composed of a dipole with a moment with forces along axis x1 and arms on x2 and of a dipole with a moment with forces along axis x2 and arms on x1. For comparison, the equivalent in its action couple of two normal and two reverse forces rotated at 450 towards the coordinate axes is added. A double dipole without a moment along arbitrary axes ( and ( (((() is given in Fig.10.


	The equation of the displacements uDDi for a double dipole without moment, composed of a dipole with a moment along axes (, ( and of a dipole along axes (,( is simply obtained as a sum of (69) and its derivative equation for the dipole along (,(, and therefore


	�EMBED Equation.3���	(81)
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Fig.9.  Double couples without a moment on a moment on axes x1 and x2; at right is given the equivalent couples (principal stresses) at 450 forward the axes x1 and x2.


�EMBED Word.Picture.8���


Fig.10.  Double couples without a moment on arbitrary axes ( and ( (((().


	The components of P and S waves here are respectively


	�EMBED Equation.3���	(82)


When the axes of the double dipole without a moment are xk and xl equation (81) achieves the form


	�EMBED Equation.3���	(83)


and for the dipole from Fig. 9, substituting k=1 and l=2, it is obtained


	�EMBED Equation.3���  .	(84)


The last equation is identical to (59) by which the equivalence of the models of the double dipole without a moment and of the principal stresses is confirmed (see Fig.9). The components of the double dipole without a moment in the x1x2 plane are as follows


	�EMBED Equation.3���	(85)


From the comparison of the components for P wave in (85) and (66) it is immediately understood that they differ by a multiplier 2, which means the character of the field is the same for a dipole with a moment and a double dipole without a moment. The comparison of (82) and (70) for the more general case shows the same. Obviously the general conclusion that the field of the radiated P wave is of one type for the model of the principal stresses, for a dipole with a moment and for a double dipole without a moment is valid.


	Similarly to (71), the components of the displacement uDDn for a double dipole without a moment in spherical coordinates for n=1((R),2(((),3((() will be


	uDDn=uDDjcjn         (n,j=1,2,3)  ,	(86)


Taking into consideration equations (17)-(20), with the help of (81) the following expression is obtained


	�EMBED Equation.3���  ,	(87)


where the components uDDR, uDD( and uDD( are as follows


	�EMBED Equation.3���	(88)


It is immediately understood that the component uDDR is the result only of P wave and the components uDD( and uDD( are connected with wave S.


	Repeating the procedure for obtaining the above equations, from (83) is found that


	�EMBED Equation.3���  ,	(89)


where the different components are as follows:


	�EMBED Equation.3���


	�EMBED Equation.3���	(90)


	�EMBED Equation.3���  .


Substituting k=1 and l=2 for the doublet in the plane x1x2 it is obtained


	�EMBED Equation.3���	(91)


and taking into account the basic equations (17)-(19), it follows that 


	�EMBED Equation.3���	(92)


where the components by R, ( and ( taking into consideration (67) are


	�EMBED Equation.3���


	�EMBED Equation.3���	(93)


	�EMBED Equation.3���  .


It is understandable that equations (91)-(93) are also valid for a couple of two normal and two reverse forces rotated to 450 towards the coordinate axes or for the model of the principal stresses (Fig.9) because of the identity of equations (84) and (59). Therefore, when solving the inverse problem for finding the type of the source by the radiated field in P and S waves, these two models will be indistinguishable.


	The comparison of (92) and (93) with (76) and (77) for a dipole with a moment shows that the relations uDDR=2uDMR and uDD(=2uDM( are valid and only the components uDD( and uDÌ( are distinguished. Obviously in the inverse problem the double dipole without moment and the dipole with a moment will also be indistinguishable by the field of P wave and by the (-component in S. The field of displacements in the plane x1x2 ((=(/2) for a double dipole along axes x1 and x2, which is the same for a couple of two normal and two reverse forces rotated to 450 towards those axes (the model of the principal stresses) is given in Fig.11. In this plane uDD(=0 and the components uDDR and uDD( form peculiar four-leaves “clovers” with maximums rotated at 45(. The comparison with Fig.8 immediately leads to the conclusion concerning the mentioned coincidence in the pattern of the field for P wave (the component by R).
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Fig.11.  Displacement field of double couples without a moment on axes x1 and x2 in the plane x1x2 ((=(/2) for component UDDR of P wave (left) and component UDD( of S wave (right).


	The component of P wave uDDR is positive (sign +, compression) for the observer within the intervals 0<(<(/2 and (<(<3(/2 and has maximal values at (=(/4 and (=5(/4. This component is with a negative sign (dilatation) for the observer within the intervals (/2<(<( and 3(/2<(<2( and has extreme values at (=3(/4 and (=7(/4. It reduces to zero for (=0 (() in the plane x2=0 and for (=(/2 (3(/2) in the plane x1=0. The component uDD( of S wave has extreme values for (=0 and (=( along axis x1 and for (=(/2 and (=3(/2 along axis x2. It is canceled for (=(/4 (5(/4) and for (=3(/4 (7(/4), i.e. along the line halving the coordinate quadrants. As mentioned, for the double dipole and for the model of the principal stresses, without supplementary information it cannot be distinguished which of the nodal planes is the active one.


6. Concluding remarks


	The formulas derived in items 3, 4 and 5 can be used to study and solve different problems regarding the earthquake mechanism, including the determination of the radiated fields of the most frequently used in practice point mathematical models of seismic sources. The reader should take into account that the most typical models of earthquake sources are the ones given in items 4 and 5. In addition, almost all formulas can be used for an easy and convenient creation of more complex models, when this is required for some more specific sources. For instance, the sum of a double dipole without a moment and a normal linear dipole can be used for obtaining a bilateral tension component perpendicular to the active nodal plane. However, it should be borne in mind that the more complex combinations can lead to a change of the active nodal plane, even if the type of model is preserved. For example, a model of the principal stresses (equivalent to a compensated double dipole), plus a center of dilatation, plus a normal linear dipole, leads again to a model of the principal stresses (equivalent to a compensated double dipole), but with another active nodal plane and parameters. All this should also be taken into account in the attempts of decomposition of the more complex models to their elementary constituents.


	The parameters of the models on axes (, ( and ( in a coordinate system Î((( will directly correspond to the standard solutions for the mechanism of the sources, obtained in the “geographic” coordinate system Îõ1õ2õ3=ÎNEZ. The latter is quite essential as in this way the interpretation of the practical solutions for the mechanism of the sources is significantly relieved.
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Îáçîð âúðõó ìàòåìàòè÷íèòå ìîäåëè íà êîíâåíöèîíàëíè ñåèçìè÷íè èçòî÷íèöè. ×àñò ²²: Äèïîë ñ ìîìåíò, äâîåí äèïîë áåç ìîìåíò è íÿêîè êîìáèíàöèè.


Ëþäìèë Õðèñòîñêîâ


Ðåçþìå.  Íàñòîÿùèÿò îáçîð èìà äâå ÷àñòè è öåëè äà ïðåäëîæè óäîáåí âàðèàíò íà óíèôèöèðàíà ôîðìà çà ïðåäñòàâÿíå íà èçâåñòíèòå ôîðìóëè çà áàçèñíèòå êîíâåíöèîíàëíè ìîäåëè íà èçòî÷íèöèòå, èçïîëçâàíè çà îïðåäåëÿíå íà ìåõàíèçìà íà ñåèçìè÷íèòå ñúáèòèÿ. Â ïðàêòèêàòà âñå îùå ñúùåñòâóâàò èçâåñòíè ïðîáëåìè, òúé êàòî ôîðìóëèòå çà ðàçëè÷íèòå ìîäåëè íà èçòî÷íèöèòå ñà ïî ïðèíöèï èçâåäåíè çà íåóíèôèöèðàíè êîîðäèíàòíè ñèñòåìè. Íåùî ïîâå÷å, îçíà÷åíèÿòà èçïîëçâàíè îò ðàçëè÷íèòå àâòîðè âàðèðàò çíà÷èòåëíî, ôàêò êîéòî âíàñÿ äîïúëíèòåëíè çàòðóäíåíèÿ. Â äîáàâúê, ñúùåñòâóâàò îãðàíè÷åí áðîé ðàáîòè îïèñâàùè ïîñëåäîâàòåëíî “åâîëþöèÿòà” íà ìîäåëèòå, íàïðèìåð çàïî÷âàéêè îò ïðîñòàòà êîíöåíòðèðàíà ñèëà çà äà ñå ïîëó÷àò ïî-ñëîæíèòå ìîäåëè çà äâîéêè ñ ìîìåíò è áåç ìîìåíò. Ïðåîáëàäàâàùîòî êîëè÷åñòâî ïóáëèêóâàíè ðåøåíèÿ íå ðàçãëåæäàò ïî-îáùèòå ñëó÷àè íà äåéñòâèå íà ñèëèòå â ïðîèçâîëíè íàïðàâëåíèÿ. Èìàéêè ïðåäâèä êàçàíîòî ïî-ãîðå, â íàñòîÿùèÿ îáçîð å èçïîëçâàíà ñòàíäàðòíà äÿñíà êîîðäèíàòíà ñèñòåìà (ïðàâîúãúëíà Ox1x2x3 èëè ñôåðè÷íà OR((). Äîïúëíèòåëíî â Ox1x2x3 å âúâåäåíà è ïðîèçâîëíî îðèåíòèðàíà êîîðäèíàòíà ñèñòåìà O(((. Ïîñëåäíàòà ñå èçïîëçâà çà îáùèòå ñëó÷àè, êîãàòî äåéñòâàùèòå ñèëè ñà ïðîèçâîëíî îðèåíòèðàíè â ïðîñòðàíñòâîòî. Îñíîâíèòå ñèñòåìè Ox1x2x3 èëè OR(( ñúùî ñå ðàçãëåæäàò êàòî “ãåîãðàôñêè”, êîãàòî îñ x1 å îðèåíòèðàíà êúì N, îñ x2 êúì E è x3 ïî âåðòèêàëàòà Z íàñî÷åíà êúì öåíòúðà íà Çåìÿòà. Òàêà îðèåíòèðàíèòå êîîðäèíàòíè ñèñòåìè Ox1x2x3(ONEZ òî÷íî ñúîòâåòñòâàò íà ñòàíäàðòíèòå, èçïîëçâàíè çà ïîëó÷àâàíå íà ðåøåíèÿòà çà ìåõàíèçìà íà èçòî÷íèöèòå. Îò÷èòàéêè òîâà, ñà ïîëó÷åíè ôîðìóëèòå çà êîìïîíåíòèòå íà ïðåìåñòâàíèÿòà çà ìîäåëè ïî îñèòå (, ( èëè (, è ïî-ñïåöèàëíî, çà ïðîñòà êîíöåíòðèðàíà ñèëà è ëèíåéíà äâîéêà (÷àñò I) è çà äèïîë ñ ìîìåíò è äâå äâîéêè ñèëè áåç ìîìåíò (÷àñò II). Îò òåçè ôîðìóëè å ëåñíî äà ñå ïîëó÷àò òðàíñôîðìàöèèòå â ñôåðè÷íè êîîðäèíàòè, êàêòî è äà ñå ðàçäåëÿò êîìïîíåíòèòå íà ïðåìåñòâàíèÿòà â íàäëúæíèòå (Ð) è íàïðå÷íèòå (S) âúëíè.
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