Review on the mathematical models for conventional seismic sources. Part I: Introductory considerations, concentrated force, linear dipoles and some combinations.
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Abstract.  The present review has two parts and it is meant to offer a convenient variant for unified presentation of the known formulas for the basic conventional source models used for determining the focal mechanism of seismic events. In the practice, still arise some problems, as the formulas for the different source models are originally derived in non uniform coordinate systems. Furthermore, the notations used by different authors vary considerably, a fact, which introduces some supplementary obstacles. A limited number of papers are describing the subsequent “evolution” of source models, for example, starting from a simple concentrated force to derive the more compound models of couples with a moment and without a moment. The predominant number of the published solutions do not consider the general case of forces acting in arbitrary directions. Taking into account the above mentioned circumstances, in the present paper a standard right hand coordinating system (rectilinear Ox1x2x3 or spherical OR(() is considered. In addition, within the system Ox1x2x3 an arbitrary oriented coordinate system O((( is introduced. The later is used to present the source models in the general case when the acting forces are arbitrary oriented in the space. The systems Ox1x2x3 or OR(( should also be treated as “geographic” when axis x1 is oriented to N, axis x2 to E and x3 along the vertical Z towards the Earth’s center (nadir). Thereby oriented coordinate systems Ox1x2x3(ONEZ exactly correspond to the standard ones used in practice for obtaining the fault plane solutions. Considering this, the formulas for displacement components of models on the axis (, ( or (, namely for simple concentrated force and linear couple (part I) and dipole with a moment and double couple without a moment (part II) are evaluated. From these formulas it is easy to obtain the transformations in spherical coordinates, as well as to separate the displacement components of the longitudinal (P) and the shear (S) waves. 
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1.  Introductory consideration
Traditionally in seismology a dual concept concerning the representation of earthquake sources predominates. The most popular one is that of a point source identifying the earthquake hypocenter with the source itself, which is quite admissible for each seismic station recording the radiated waves at an epicentral distance that surpasses the actual physical dimensions of the source. The point source is a convenient idealization for determination of the hypocenter (epicenter) of earthquakes, and the geographical coordinates (, ( and depth h are quite sufficient for marking the location of a given earthquake in the seismic bulletins and catalogues. The source shrinking to a point is convenient for determining the fault plane solution. When however the earthquake is considered on a macroscale basis and the epicentral region covers thousands of square kilometers of damages and destruction, the point idealization immediately looks physically insubstantial. The sources linear dimensions grow with the magnitude M and for the strong earthquakes they could reach 300-350 km, and even for the small earthquakes the point idea can turn out to be unrealistic. It is important that the dual treatment of the earthquake source as a point or as a certain macrovolume is not an obstacle at all for the correct solution of the main seismological problems when from a physical viewpoint their settings are correct enough.
It can be considered that the solution of the earthquake mechanism of a point source (hypocenter) reflects only the initial stage of fault formation in the real focus with a definite surface and volume. Then from a macroscopic position the solution for the point source will be representative for the whole focus under the assumption that from the starting phase to the final phase of the destruction solely one fault surface is formed in a physico-mechanical aspect. This indisputable so far suggestion gives an opportunity in practice to use the point mathematical models in the tasks for obtaining the fault-plane solutions of the earthquake sources.
In the core of the theory of the point mathematical models of the foci is the idealization for a concentrated force which can realize impacts in the environment when its physical dimensions become infinitesimal (Stokes G.G., 1848, Love A.E.H., 1944 (1892)). Combinations of concentrated forces form a force couple (dipole) without or with a moment, a double dipole without a moment and so on, which are main representatives of the conventional mathematical point models for the earthquake sources. The development of the investigations can be traced out in the works of Nakano H., 1923, Byerly P. 1926, 1955, Kawasumi H., 1937, Keylis-Borok V.I., 1950, Hodgson J.H, R.S. Storey, 1951, Vvedenskaya A.V., 1956, 1969, Kasahara K., 1957, 1981, Gotsadze O.D. et al., 1957, Honda H., 1962, Stauder W., 1962, Stefansson R., 1966, Wickens A.J., J.H. Hodgson, 1967; Ichikawa M., 1971, 1974, 1979, Kostrov B.V., 1975, Herrmann R.B., 1975, Rice J.R., 1980, Aki K., P.G. Richards, 1980, Ben-Menahem A. S.J. Singh, 1981. Gadomska B., 1983, Dmowska R., J.R. Rice, 1983, Kanamori H., E. Boschi (eds), 1986, Christoskov, 2001 et al.
Below, in a summary form, a review of the solutions concerning the conventional point models of earthquake sources is presented. Of course there are specific features which should be taken into account in order to reach a smooth and understandable presentation. The formulas about the basic models have been obtained by the different authors without using a unified coordinate system and universal symbols. There are right or left, zenith or nadir, rectangular or spherical coordinate systems. The symbols used by the different authors strongly differ which makes more difficult the transition from author to author or from one model to another model.
It must be born in mind there is only a limited number of publications which present the consecutive “evolution” of the solutions, for example starting from a concentrated force and reaching the more complex models of double couples of forces with or without a moment. In most publications the solutions of particular cases are considered when the active forces are oriented along the coordinate axes and not for the general case of forces in arbitrary directions.
Taking into account the above considerations in the present review the right-hand rectangular Cartesian coordinate system Ox1x2x3 and its equivalent spherical system OR(( (R=(x12+x22+x32)1/2, (=argtg[(x12+x22)1/2/x3], (=arctg(x1/x2), x1=Rsin(cos(, x2=Rsin(sin(, x3=Rcos() have been used as a basic one. In the practical fault-plane solutions the focal sphere (R=1) is oriented towards the world local directions and the vertical. This means the basic systems Ox1x2x3 and OR(( should mentally be considered also as coordinate systems with an axis x1 directed to N (north), axis x2 directed to E (east) and x3 directed along the vertical Z towards the Earth’s center (nadir). Thereby oriented coordinate systems Ox1x2x3(ONEZ (x1=N, x2=E, x3=Z) and OR(( can also be called “geographic” because they have been the ones used in practice as standard ones for earthquake mechanism solutions.
Inside the basic coordinate systems a right rectangular system O((( can be introduced along whose axes the models of the point sources are oriented or a coordinate system OTP( for presentation of the model of the principal stresses can be incorporated. In the latter the axes of tension T (quadrants +) and of compression P (quadrants -) have been rotated at 45( clockwise towards axes ( and (. The direction cosines of axes (, (, ( from O((( towards axes xi (i=1,2,3) of Ox1x2x3 will be �EMBED Equation.3��� and the cosines of axes T,P, ( from OTP( will be ciP, ciT, ci(. Each point from the system O((( or OTP( will be presented by its coordinates along axes xi (i=1,2,3) from the equations
	�EMBED Equation.3���	(1)
where the matrixes of the directing cosines are as follows
	�EMBED Equation.3���	(2)
The connection between the direction cosines along axes T,P and (, (,( is obvious
	�EMBED Equation.3���	(3)
When the spherical coordinates are used the directing cosines are
�EMBED Equation.3���
�EMBED Equation.3���	(4)
�EMBED Equation.3���
for each axis k=(,(,(,T,P. Obviously the angles (k are the inclinations of the axes towards the vertical x3=Z and the angles (k are the azimuthal ones of the respective axis. The corresponding angels of the inclination to the horizontal plane õ1õ2 (NE) will be (k=(/2-(k.
In such a case the components of the displacement vector U (amplitudes), emitted from the point sources for R>0, can be notified most generally as ui (i=1,2,3 or i=R,(,(). When necessary, it is admissible to add a supplementary subscript for indicating the type of the different source models.
2.  Concentrated force
As noted the theory has been developed by Love (1944 (1892)) at the end of the 19-th century. He gives a mathematical expression of the displacements field caused by a concentrated force applied in a certain point of an endless perfect elastic medium. Following Love, here we have introduced significant elimination and suitable modernized symbols. From a physical point of view however the concentrated force itself should not be considered as a reliable model of an earthquake source.
It is expedient the initial consideration to be realized for a concentrated force directed along one of the axes of the coordinate system Ox1x2x3. It is proceeded from the equilibrium equation of a perfect elastic body with a volume V which can be written in the form
	�EMBED Equation.3���        (i=1,2,3),	(5)
where ( and ( are Lame constants, the dilatation is (=divU(ui) and Fi are the components of the body force F in the volume V. The general solution of equation (5) is obtained from the sum of its particular solution as well as from the solution when Fi=0. Therefore the effects of the body forces are presented exactly by the particular solutions of (5). Usually a partial solution is looked for when Fi are different from zero only in a small volume (V, which can be a part of the whole volume V.
The components ui of the displacement vector U=grad(+rot( are expressed by the scalar ( and the vector (((1,(2,(3) potentials. In the same way are presented the components Fi of the body force F=grad(+rot( by the potentials ( and (((1,(2,(3) so that we can write
	�EMBED Equation.3���      �EMBED Equation.3���.	(6)
The same treatment is applied for the conditions of the elastodynamic equilibrium for t(0. The equation (5) is satisfied when the potentials ( and ( are satisfying the wave equations for longitudinal (P) and shear (S) waves, and the particular solutions for ( and ( are presented in the form
	�EMBED Equation.3���	(7)
where (, (, ( and ( are the values of ( and ( in an arbitrary point (x’1,x’2,x’3) from (V, r is the distance from point (x’1,x’2,x’3) to the observation point (x1,x2,x3) and a,b are the velocities of the longitudinal and shear waves in the medium. The potentials ( and ( are expressed by the components F’i of the force F of the point (x’1,x’2,x’3) in the following way
	�EMBED Equation.3���	(8)
having in mind that F is canceled outside of (V, and therefore, the potentials ( and ( out (V are zero.
After that it is passed towards the boundary case when the volume (V decreases down to zero, but provided in the vicinity of the point �EMBED Equation.3��� the integral �EMBED Equation.3��� (k=1,2,3) keeps a finite value. This approach leads to the defining of the so called concentrated force fk(t) operating in the point �EMBED Equation.3���along one of the coordinate axes xk (k=1;2;3). It is determined by the boundary transition
	�EMBED Equation.3���	(9)
After a series of intermediate transformations for the displacement components in (6) caused by the action of concentrated force f1(t) it is found
	�EMBED Equation.3���	(10)
where the following notations are used: �EMBED Equation.3��� and �EMBED Equation.3���.
Taking into consideration that for example ((R/(x1)2=(x1/R)2, while (2(1/R)/(x12=(3x12-R2)/R5 ( 1/R3, certain simplifications in equations (10) can be introduced. The terms in the square brackets will have quite a different weight for an observation point (x1,x2,x3) removed at a sufficiently large distance R. Then for the more general case, when a concentrated force f(t) is directed along one of the coordinate axes xk (k=1;2;3) and is applied in the origin of the coordinate system (Fig.1 for k=1), the displacement components ui (i=1,2,3) could be presented by the generalized expression
	�EMBED Equation.3���	(11)
where the following notations have been used: fa=f(t-R/a) and fb=f(t-R/b). Substituting also
	�EMBED Equation.3���       �EMBED Equation.3���  ,	(12)
equation (11) can be simplified to the more convenient form
	�EMBED Equation.3���.	(13)
For example, the displacements for force f(t) directed along axis x1 will be
	�EMBED Equation.3���,	(14)
In the most general case the force f(t) can be directed along an arbitrary axis ( (Fig.2) with direction cosines �EMBED Equation.3��� towards the axes xi (i=1,2,3) and therefore �EMBED Equation.3���. Then the expressions of the displacement components ui will obtain the form
	�EMBED Equation.3���         (i,j=1,2,3)  .	(15)
�
Fig.1.  Concentrated force f(t) applied at the	Fig.2.  Concentrated force f(t) applied at the 
origin of the coordinate system and directed	origin of the coordinate system and directed
along axis x1.	along an arbitrary axis (.
In equations (11)–(15) the displacement components for P and S waves are easily separated. For instance, in (15) they respectively will be:
	�EMBED Equation.3���        �EMBED Equation.3���.	(16)
The transition from (15) or (13) to (14) is obvious. If ((x1 and only �EMBED Equation.3���=1, equation (14) is obtained directly from (15), which is the same if in (13) is introduced k=1.
For separating the displacement components of P and S waves and for illustrating the field radiated from the source, it is convenient the displacement components to be presented in the system OR((. The components in spherical coordinates are uR, u(, u(, and expressed by uj (j=1,2,3) will be
	�EMBED Equation.3���	(17)
The respective directing cosines are as follows (see (4))
�EMBED Equation.3���   �EMBED Equation.3���   �EMBED Equation.3���
�EMBED Equation.3���
�EMBED Equation.3���	(18)
�EMBED Equation.3���
�EMBED Equation.3���   �EMBED Equation.3���   �EMBED Equation.3��� ,
which written in a generalized form are
	�EMBED Equation.3���     �EMBED Equation.3���     �EMBED Equation.3���  . 	(19)
From these equations, after summing up for j=1,2,3, the following expressions can be obtained
	�EMBED Equation.3���	(20)
Equations (17) can be presented in the more convenient compact form
	un=ujcjn        (n,j=1,2,3)  , 	(21)
implying that n=1((R), n=2(((), n=3(((). Then, after replacing (15) in (21) and taking into account (20), the following generalized expression is obtained
	�EMBED Equation.3���  , 	(22)
so that the detached displacement components are as follows
	�EMBED Equation.3���	(23)
As immediately seen the component uR is the result only of P wave, and the components u( and u( are connected with the S wave.
Proceeding from (13), for force f applied along one of the coordinate axes xk on the analogy of (22), for displacements un can be written
	�EMBED Equation.3���	(24)
and
	�EMBED Equation.3���     �EMBED Equation.3���     �EMBED Equation.3���  . 	(25)
For a force directed along axis x1 (k=1), taking into consideration (18) and the notation from (12) and (18), simillar expressions can be obtained:
	�EMBED Equation.3���	(26)
	�EMBED Equation.3���	
	�EMBED Equation.3���	(27)
	�EMBED Equation.3���	
It is understood from the last equations that the plane x1=0 is the active one, along which an unilateral tension crack is realized towards the positive direction of axis x1. In the horizontal plane x1x2 ((=(/2) the component uR of P wave has its maximal value for (=0 and it is invalidated for (=(/2. The radiated field will have sign + (compression) for an observer in the halfspace x1>0 at a distance R>0. One of the components of S wave is u(=0 and the other u( has extreme values for (=(/2 ((=3(/2) and is invalidated for (=0. It should be noted that if the force f is directed reversely it will cause an unidirectional pressure towards the plane x1=0. Then for an observer at a distance R>0 for x1>0 the radiated field of P wave will be with a sign minus (dilatation).
3.  Couples of forces without a moment and some combinations of them
A couple of forces (dipole) without a moment is a system of two concentrated forces lying on one straight line, equal in size and in opposite directions, applied to two infinitely close points in the vicinity of the coordinate system origin. In Fig.3 and Fig.4 normal linear dipoles are shown in which the forces are directed along the positive and negative direction on the axis on which the dipole lies. Such a source corresponds to a destruction type I and causes a pure bilateral tension crack in the medium. By forces in an opposite direction a pure pressure will be realized in the plane perpendicular to the two forces, and such a dipole is called reverse. For physical considerations the couples of forces without a moment is unrealistic to be considered as a model of an earthquake source. It is possible however a linear couple of forces without a moment to be incorporated in the more complex point models, which explains the observed change in the balance between the compressional and dilatational fields in the quadrant distribution of the signs for some specific earthquake sources. The couple of forces without moment is an important element in the creation of the more complex mathematical models of the seismic sources. For example a sum of mutually perpendicular linear dipoles without a moment, form a center of extension or an elementary point model of an explosive source.
�
Fig.3.  Normal dipole without a moment 	Fig.4.  Normal dipole without a moment
along axis x1.	along axis (.
In the present consideration it is proceeded from the elementary case when the points of application of the forces lie on axis x1 at a distance ( from each other and the forces act along the positive and negative directions of this axis (Fig.3). The displacement ui(x1-(/2,x2,x3) from the force f(t) acting along the positive direction of x1 in the application point ((/2,0,0), can be found from (14), replacing x1 by x1-(/2. By analogy with the latter, the displacement caused by the force -f(t), applied in the point (-(/2,0,0) will be -ui(x1+(/2,x2,x3). The sum of these two composites will correspond to the displacement of the couple of opposing forces. In such a case, in the limit ((0, instead of f(t) is used MD(t)=(f(t) (Gotsadze, 1957, Kasahara K., 1981). It is taken into account that the product (f(t), called dipole intensity (Gotsadze, 1957), should remain constant (slowly changeable), when ((0 and f(t) increase. Then the displacements uDi (i=1,2,3) for the couple forces along axis x1 is determined by the approach (Kasahara K., 1981)
	�EMBED Equation.3���  .	(28)
After differentiating ui in (14), all terms proportional to 1/Rn can be neglected for n(2 at large distances R. Then the displacement components uDi of couple forces along axis x1 will be
	�EMBED Equation.3���  ,	(29)
or
	�EMBED Equation.3���	(30)
where by analogy with (12) the following notation is introduced
	�EMBED Equation.3���      �EMBED Equation.3���	(31)
and correspondingly �EMBED Equation.3��� and �EMBED Equation.3���.
When the dipole lies on one of the coordinate axes xk then in (28) the derivatives will be -(ui/(xk (k=1;2;3) and by analogy with (29) the corresponding displacement components are
	�EMBED Equation.3���  .	(32)
When the dipole is oriented along an arbitrary axis ( (Fig.4) with direction cosines ci(, then similarly to (15) the following can be written
	�EMBED Equation.3���  ,	(33)
the corresponding to (16) components for P and S waves being
	�EMBED Equation.3���      �EMBED Equation.3��� .	(34)
At (=x1, c1(=1, c2(=c3(=0 the equation (33) coincides with (29).
Similarly to (21), the components uDn for a dipole without a moment in spherical coordinates for n=1((R),2(((),3((() are
	uDn=uDjcjn                (n,j=1,2,3)  ,	(35)
and from (33) by analogy with (22) follows
	�EMBED Equation.3���  ,	(36)
the respective components uDR, uD( and uD( being
	�EMBED Equation.3���	(37)
As immediately seen the component uDR is the result only of P wave and the components uD( and uD( are connected with the S wave.
Repeating the procedure for obtaining the above equations, from (32) is found
	�EMBED Equation.3���  ,	(38)
where the components are
	�EMBED Equation.3���     �EMBED Equation.3���     �EMBED Equation.3���  .	(39)
When k=1 and equations (17)-(19) are taken into account, for a couple of forces directed along x1 is obtained,
	�EMBED Equation.3���	(40)
where the components regarding R, ( and ( taking into consideration (31) are
	�EMBED Equation.3���
	�EMBED Equation.3���	(41)
	�EMBED Equation.3���  .
From the above equations it is understandable that the active plane is x1=0 along which a bilateral tension crack is realized. In the horizontal plane x1x2 ((=(/2) the P wave component uDR has a maximal value for (=0 and is diminished to 0 by (=(/2. The radiated field will have a sign + (compression) along the positive and negative directions of axis x1. One component of S wave is uD(=0, and the other uD( has extreme values for (=(/4 ((=3(/4) and is nullified for (=0 (() and (=(/2 (3(/2). This shows that the maximum displacements of the radiated P and S waves are displaced at 45(. It should be noted that if the dipole is reverse it will cause a bilateral pressure towards the plane x1=0 and then the field of P wave will be only with a sign minus (dilatation) in both directions of axis x1.
	Some models of point sources, obtained from the combination of two and more dipoles without a moment, are of greater interest for seismology. Such is the sum of two normal dipoles acting along two mutually perpendicular axes with displacements u2Di, the sum of a normal and reverse dipoles with displacements �EMBED Equation.3���, the sum of three mutually perpendicular reverse dipoles with displacements �EMBED Equation.3��� (center of decompression), etc.
	The sum of two normal dipoles acting along two mutually perpendicular axes can be considered as a plane center of compression in the plane of the dipole axes. The equations of the displacement components u2Di of dipoles along axes ( and ( follow from the main equation (33), after summation for the respective axes ( and (
	�EMBED Equation.3���	(42)
When ((xk and ((xl (k(l) the equation is simplified to the form
	�EMBED Equation.3���  ,	(43)
and for k=1 and l=2 a center of extension in the plane x1x2 is formed with displacement components
	�EMBED Equation.3���	(44)
namely
	�EMBED Equation.3���	(45)
The equation for the displacements �EMBED Equation.3��� from the sum of a normal and reverse dipole, operating along two mutually perpendicular axes ( and ( (((() is similar to equation (42), but the sums in the square brackets are to be replaced by the corresponding differences
	�EMBED Equation.3���	(46)
The equivalents to (43)-(45) for the sum of a normal and reverse dipole are
	�EMBED Equation.3���	(47)
	�EMBED Equation.3���	(48)
	�EMBED Equation.3���	(49)
The displacements u2Di and �EMBED Equation.3��� in spherical coordinates will correspondingly be
	u2Dn=u2Djcjn        �EMBED Equation.3���        (n=1(=R),2(=(),3(=()).	(50)
Then from (42) and (46) follow equations
	�EMBED Equation.3���	(51)
	�EMBED Equation.3���	(52)
whence very easily the components by R, (, ( , for n=1,2,3 are obtained.
	Applying equations (50) for dipoles lying on two of the coordinate axes xk and xl from (43) and (47) respectively follow
	�EMBED Equation.3���	(53)
	�EMBED Equation.3���  ,	(54)
whence immediately follow the components by R, (,( for n=1,2,3.
	For dipoles along axes x1 and x2 from the last two equations it is found
	�EMBED Equation.3���	(55)
	�EMBED Equation.3���  ,	(56)
and the components by R, (, (, taking into account (31) and (18) are as follows:
	�EMBED Equation.3���	(57)
	�EMBED Equation.3���	(58)
Although formulas (51)-(57) for a sum of two normal dipoles and of a normal and reverse dipoles differ only in the signs of the expressions in the square brackets of (51) and (52), from components (57) and (58) it is found that the radiated field in P and S is quite different. In the plane õ1õ2 ((=(/2), only the component u2DR is distinct from zero. In the horizontal plane only a longitudinal wave of compression is emitted for each distance R>0, i.e. such a source is a plane center of compression. In the same plane, from the sum of the normal and reverse dipole, the displacement components by R and ( are different from zero, and in equal other conditions, the proportions �EMBED Equation.3���(cos2( and �EMBED Equation.3���(-sin2( are valid for them. Therefore in P wave along axis (õ1 a maximal field of compression is radiated (sign +) and along axis (õ2 a maximal field of dilatation (sign -) is generated The field of P wave vanish  along the nodal lines (=(/4 (5(/4) and (=3(/4 (7(/4), which appear to be projections of the nodal planes in õ1õ2 and which determine the quadrant distribution of the signs of the radiated P wave. A reverse pattern is observed regarding the component of S wave by (, which has extreme values near the nodal lines and vanish along the axes x1 and x2.
	Very important is the particular case following from (46) for axes T and P lying in the plane x1x2 under angles of 45( towards axes x1 and x2 (see Fig.9 of part II). Along axis T a couple of tension forces operates (compression for the observer) and along axis P-couple forces of pressure (dilatation for the observer). Such a combination of couples of forces without a moment can be considered as a model of a point source which is the result of the principal stresses in the medium. Below, the models of this type will be called the models of principal stresses. In this case the direction cosines will be c1T=c2T=�EMBED Equation.3���/2, c3T=0 and c1P=-�EMBED Equation.3���/2, c2P=�EMBED Equation.3���/2, c3P=0. Taking into account equation (46), after a certain transformation, the following expression is obtained
	�EMBED Equation.3��� ,	(59)
which is equivalent to the equation of the displacements of a double dipole without a moment in the plane x1x2 as shown further in item 5. Practically equation (59) is similar to (48) but now the dipoles are rotated around axis x3 at 450 towards their initial position. Therefore the pattern described above concerning the radiated field from components �EMBED Equation.3��� and �EMBED Equation.3��� in the plane x1x2 will be the same but will be rotated to 450 from x1 to x2. Now the field of P wave vanish along nodal lines (=0 (() and (=(/2 (3(/2) which are the projections of the nodal planes and which determine the quadrant distribution of the signs of the radiated P wave (see Fig.8 and Fig.11 of part II). For the model of the principal stresses however it cannot be said which of the nodal plane is the active one and which is the auxiliary one. 
�
Fig.5.  Spatial center of extension (explosion), formed by three lineal dipoles along the three coordinate axes.
	Finally the model of center of extension (explosion) and the model of dilatation (implosion) remain to be considered. An extension center can be modeled if at the origin along three mutually perpendicular axes (, (, ( or x1, x2, x3 a normal dipole without a moment is placed (Fig.5). Then if the displacement from a linear dipole along axis ( (((((() is added to equation (42), or in (43) along axis õm (m(k,l), or in (44) along x3, the equation for the displacement components u3Di for a spatial center of compression or for an elementary explosion source is obtained
	u3Di=CDaR2xi        (i=1,2,3)  ,	(60)
which in spherical coordinates is reduced to the only term
	�EMBED Equation.3���         (u3D(=u3D(=0) .	(61)
It immediately becomes clear that the center of compression radiates in all directions only longitudinal waves of compression (sign +).
	In the way described above the spatial center of dilatation (implosive source) is modeled. The difference is that the three dipoles are reversed, which leads to a change of the signs in (60) and (61), thus the displacements are presented by equations:
	�EMBED Equation.3���=-CDaR2xi	(62)
	�EMBED Equation.3���        (�EMBED Equation.3���0)  .	(63)
From such a source also only longitudinal waves are radiated in the entire space, but waves of a dilatational type with sign minus.
	The continuation of this paper is given in part II where the dipoles with a moment, double couples without a moment and some combinations of them are considered.
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Îáçîð âúðõó ìàòåìàòè÷íèòå ìîäåëè íà êîíâåíöèîíàëíè ñåèçìè÷íè èçòî÷íèöè. ×àñò ²: Íà÷àëíè ñúîáðàæåíèÿ, êîíöåíòðèðàíà ñèëà, ëèíåéíè äèïîëè è êîìáèíàöèè.
Ëþäìèë Õðèñòîñêîâ
Ðåçþìå.  Íàñòîÿùèÿò îáçîð èìà äâå ÷àñòè è öåëè äà ïðåäëîæè óäîáåí âàðèàíò íà óíèôèöèðàíà ôîðìà çà ïðåäñòàâÿíå íà èçâåñòíèòå ôîðìóëè çà áàçèñíèòå êîíâåíöèîíàëíè ìîäåëè íà èçòî÷íèöèòå, èçïîëçâàíè çà îïðåäåëÿíå íà ìåõàíèçìà íà ñåèçìè÷íèòå ñúáèòèÿ. Â ïðàêòèêàòà âñå îùå ñúùåñòâóâàò èçâåñòíè ïðîáëåìè, òúé êàòî ôîðìóëèòå çà ðàçëè÷íèòå ìîäåëè íà èçòî÷íèöèòå ñà ïî ïðèíöèï èçâåäåíè çà íåóíèôèöèðàíè êîîðäèíàòíè ñèñòåìè. Íåùî ïîâå÷å, îçíà÷åíèÿòà èçïîëçâàíè îò ðàçëè÷íèòå àâòîðè âàðèðàò çíà÷èòåëíî, ôàêò êîéòî âíàñÿ äîïúëíèòåëíè çàòðóäíåíèÿ. Â äîáàâúê, ñúùåñòâóâàò îãðàíè÷åí áðîé ðàáîòè îïèñâàùè ïîñëåäîâàòåëíî “åâîëþöèÿòà” íà ìîäåëèòå, íàïðèìåð çàïî÷âàéêè îò ïðîñòàòà êîíöåíòðèðàíà ñèëà çà äà ñå ïîëó÷àò ïî-ñëîæíèòå ìîäåëè çà äâîéêè ñ ìîìåíò è áåç ìîìåíò. Ïðåîáëàäàâàùîòî êîëè÷åñòâî ïóáëèêóâàíè ðåøåíèÿ íå ðàçãëåæäàò ïî-îáùèòå ñëó÷àè íà äåéñòâèå íà ñèëèòå â ïðîèçâîëíè íàïðàâëåíèÿ. Èìàéêè ïðåäâèä êàçàíîòî ïî-ãîðå, â íàñòîÿùèÿ îáçîð å èçïîëçâàíà ñòàíäàðòíà äÿñíà êîîðäèíàòíà ñèñòåìà (ïðàâîúãúëíà Ox1x2x3 èëè ñôåðè÷íà OR((). Äîïúëíèòåëíî â Ox1x2x3 å âúâåäåíà è ïðîèçâîëíî îðèåíòèðàíà êîîðäèíàòíà ñèñòåìà O(((. Ïîñëåäíàòà ñå èçïîëçâà çà îáùèòå ñëó÷àè, êîãàòî äåéñòâàùèòå ñèëè ñà ïðîèçâîëíî îðèåíòèðàíè â ïðîñòðàíñòâîòî. Îñíîâíèòå ñèñòåìè Ox1x2x3 èëè OR(( ñúùî ñå ðàçãëåæäàò êàòî “ãåîãðàôñêè”, êîãàòî îñ x1 å îðèåíòèðàíà êúì N, îñ x2 êúì E è x3 ïî âåðòèêàëàòà Z íàñî÷åíà êúì öåíòúðà íà Çåìÿòà. Òàêà îðèåíòèðàíèòå êîîðäèíàòíè ñèñòåìè Ox1x2x3(ONEZ òî÷íî ñúîòâåòñòâàò íà ñòàíäàðòíèòå, èçïîëçâàíè çà ïîëó÷àâàíå íà ðåøåíèÿòà çà ìåõàíèçìà íà èçòî÷íèöèòå. Îò÷èòàéêè òîâà, ñà ïîëó÷åíè ôîðìóëèòå çà êîìïîíåíòèòå íà ïðåìåñòâàíèÿòà çà ìîäåëè ïî îñèòå (, ( èëè (, è ïî-ñïåöèàëíî, çà ïðîñòà êîíöåíòðèðàíà ñèëà è ëèíåéíà äâîéêà (÷àñò I) è çà äèïîë ñ ìîìåíò è äâå äâîéêè ñèëè áåç ìîìåíò (÷àñò II). Îò òåçè ôîðìóëè å ëåñíî äà ñå ïîëó÷àò òðàíñôîðìàöèèòå â ñôåðè÷íè êîîðäèíàòè, êàêòî è äà ñå ðàçäåëÿò êîìïîíåíòèòå íà ïðåìåñòâàíèÿòà â íàäëúæíèòå (Ð) è íàïðå÷íèòå (S) âúëíè.
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