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Abstract.  foF2 measurements selected from the COST251 data base for 15 European stations over a period of 11 years (1981-1991) are used to reveal some statistical properties of the relative daily deviations of foF2 (denoted as () from their corresponding sliding medians over different days for the same hours. Emphasis is placed on composite statistics rather than a break-down by hours and months. The standard deviations (SD’s) of ( (relative square-root deviations of foF2 from the medians), calculated for each station for the whole period, are used to generate a map over the area (40(, 60() N and (-10(, 45()E. This map shows the overall variability of foF2 in the European region. The form of the probability-density distribution of ( averaged over all stations is compared with those of the theoretical Laplacian and Gaussian or normal distributions. The storm-time ( is further analysed in terms of the probability distribution of the time length of positive and negative disturbances. The time and spatial autocorrelation functions are calculated to reveal the characteristic time and space scales of the main ionospheric disturbances. The spatial correlation distance is determined separately as a function of latitude and longitude to yield an isotropy ratio which is contrasted with measured values determined by other groups. For the purposes of short-term forecasting, a median based prediction is compared with predictions that follow persistence criteria.  
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1.  Introduction

Knowledge of ionospheric variability is important both to HF telecommunications systems design and operation and to aeronomy studies. The radio circuit and service planners need information regarding possible departures with respect to median conditions and aeronomists are concerned with establishing relationships between ionospheric changes and the associated responsible physical mechanisms. Although there are variations in all ionospheric characteristics, Rush et al. (1974) have shown that greatest differences from one occasion to another occur in foF2, and so the present paper is restricted to a consideration of this characteristic.

foF2 is measured on the hour each hour at a range of ionospheric stations, and typically these ‘snap-shot’ values are taken to be representative of hourly conditions. Interest therefore centres on how these hourly values change from one hour to another, how they vary from one day to another at the same place, and how they differ with location at a fixed time. Present propagation predictions for telecommunication applications use ionospheric models (ITU-R, 1997) in which monthly median characteristics values are separately determined for each hour and location, and in which day-to-day changes about these medians are treated statistically. CCIR (1978) gives the adopted reference upper and lower decile values Fu and Fl respectively of basic MUF (or foF2), expressed as a fraction of the median. In particular, there are separate numbers for different seasons, four-hour local time blocks, ranges of geomagnetic latitude, and for three bands of solar activity. 

In the present paper emphasis is placed on gross statistics using combined data representative of all times, seasons and solar epochs. Consideration is given to the precise form of the day-to-day distribution of values. Changes in variability with geographical location are examined. Spatial correlation scale sizes in latitude and longitude are evaluated. The length of time is determined over which positive and negative deviations from the median are maintained, including under storm conditions. Finally, the consequences are reviewed of different approaches to short-term forecasting using past median and persistence values. 

2.  The measurement database.

Use is made of a large measurement sample for the European region taken from the COST251 Data Bank. This covers a whole solar cycle between the years of 1981-1991 at 15 stations as indicated in Fig. 1. A total of 1,064,371 separate hourly values are distributed approximately uniformly over all hours and months. Figure 1 shows the location of the 15 stations used in the analyses. We define ( as the relative deviation on a given day from the median for different days at the same hour:
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However, medians are not taken, as is usual, over a calendar month, but are calculated separately centred on each day, using a sliding window with length of 15 days before and 15 days after the day considered. This procedure leads to smoother seasonal and solar-cycle variations than with calendar-month medians. It is seen that ( represents the short-term variations of foF2 with the seasonal and solar-cycle variations removed.
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Fig. 1
 Map of the European region showing the locations of the 15 vertical-incidence ionosondes with measurement data used in the present studies. Station names and code numbers shown are as specified by URSI.

3.  Spread of daily values and their geographical variations

The quantity ( can be regarded as a random variable dependent on time and/or geographic coordinates x, expressed here as ((x). Then the probability-density function, evaluated over the whole database combined, is given as:
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The mathematically expected (mean) value ( is:


( = M((x)
(3)

and the standard deviation ( is taken from:


(2 =M (((x) - ()2
(4)

In the above, the operators P and M denote probability and averaging respectively.
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Fig. 2.
Mean values of ( over all times for the European region


(a) Results for the individual stations, with dots proportional to magnitude


(b) Smoothed contours produced using SURFER for the data set of (a)

Figure 2a shows the overall standard deviations for each station derived using the above expressions. The numbers indicate the values and the sizes of the dots are proportional to these quantities. There are no obvious longitudinal differences, but values exhibit a tendency to rise with increase of latitude, corresponding as expected to greater variability at the higher latitudes where energy deposition from the magnetosphere becomes of increased importance. To confirm this trend, contour lines have been generated through these data points using the program SURFER (Golden Software Inc.), with polynomial interpolation of third degree, to create the results of Fig. 2b. This map may be regarded as a reference of variability over a major portion of the area considered. It does indeed show larger variations at the higher latitudes. It is to be explained that a lower latitude limit of 40(N was chosen in the production of this smoothed map, to avoid the erroneous result given by extrapolation to lower latitudes than those for which measurements were used, that variability further decreases towards the region of the equatorial anomaly crest.

4.  The form of the probability-density distribution


The overall probability-density distribution of ( is shown as a bar chart on Fig. 3. For convenience, ( is expressed as a percentage deviation from the median. The measured (’s are grouped in 1% bins. The number of (’s in each bin has been divided by the total number of measurements and by the bin width in order to derive density values. It is seen that the distribution is symmetrical to a high degree and that the most probable (mean value) deviates from the median by only 0.1%. So, for all practical purposes one may say that overall in a statistical sense the medians coincide with the mean values of foF2, though of course there may be differences in individual scenarios. The standard deviation ( calculated from all the measurements using eq. (4) is 14.7%. This is broadly consistent with the CCIR (1978) model for which the median Fu= 1.21 and the median Fl = 0.78 (approximately symmetrical) giving from eq (5), ( = 17%.

The measured distribution of ( is shown on Fig. 3 in comparison with the two idealised Gaussian and Laplacian distributions for the same mean and ( values. Whereas for ( between ( (10-25) % from the mean, the measured distribution lies intermediate to those of the two models, at ( less than 10%, it is seen that the Laplacian model, which has a more ‘spikey’ nature, provides a better fit than the Gaussian distribution. The Laplacian density distribution has the form:
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Fig. 3  Comparison of probability-density distribution given by the measurement data with Gaussian and Laplacian distributions 
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With this model representation of our measured distribution, we can readily obtain the limits of ( corresponding to any given probability P from the inequality:
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Table 1 compares the limits of ( for Gaussian and Laplacian distributions for a selection of percentage probabilities of common interest.

Table 1.  Gaussian and Laplacian distribution widths encompassing various probabilities as indicated

	
	Gaussian
	Laplacian

	 Probability P %
	times (
	((( %
	times (
	((( %

	50
	0.67
	9.91
	0.49
	7.20

	80
	1.28
	18.81
	1.14
	16.72

	95
	1.96
	28.81
	2.12
	31.16

	99
	2.58
	37.92
	3.26
	47.92

	99.9
	3.29
	48.36
	4.88
	71.73


5.Time autocorrelation function

The normalised autocorrelation function (((x) for a variable x is given as:
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The normalised time autocorrelation function of ( is presented in Fig. 4a versus time lag (or time shift). By convention, the time lag at which this function falls to a value of e-1 gives the time constant or the time scale of the variations. In our case it is about 8 hours. It is seen that there is some evidence of a 24-hour periodicity in the autocorrelation function for the lower values, which means that even with the diurnal variations removed, ( correlates best with measurements at the same LT on successive days. This effect, however, has to be regarded as quite small.

Often, instead of the autocorrelation function, the variogram function is used. This is defined as the mean (most probable) value of the square deviations of ( at two moments (or locations) x and (x+(x):
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Variogram and autocorrelation functions are related through:
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The corresponding variogram function (actually its square root) is shown plotted in Fig. 4b against the same time lag, because it is seen from eq (9) that at large time lags for low ( this approaches asymptotically the value ([image: image12.wmf]2

. A value of 20% read from Fig. 4b is consistent with the ( =14.7% previously quoted above. In 
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Fig. 4  Normalised time autocorrelation function (panel a) and square root of variogram (panel b) given by the composite measurement data as a function of time lag 

other words, the mean deviation between ( at two widely-spaced moments is equal to 1.41 times the standard deviation. The variogram function in this case is equal to twice the dispersion of the data. When the time lag is 24 hours, the square root of ( will give actually the mean day-to-day variations of foF2, which in this case are around 18%, little more that the natural dispersion of data. Day-to-day variations represent larger time-scale variations than the data dispersion over periods of an hour or so.

6. Spatial correlation function

The spatial correlation characterizes the co-variance between two points depending on the separation distance between them. This function, calculated from eq (7), is shown plotted on the map for the European area of Fig. 5a. Contours were created by determining ( for each possible combination of pairs of stations, with distances given from their respective latitude and longitude separations with regard to a corner coordinate reference. This picture is obtained with all station values for the same instant of time, ie. zero shift. The spatial correlation function was also calculated for increasing time shifts between the separate station-pair values, and it was found that results are qualitatively similar as ( decreases. The surface of ( on Fig. 5a may be approximated with the following expression:
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(10)
where (( and (( are the spatial shifts with regard to longitude and latitude respectively. Following Stanislawska et al. (1996) we introduce SF as a ‘scale factor’ indicative of correlation distance anisotropy for these coordinates. LD we call ‘scale distance’ by analogy with time scale (or time constant). The increment of the exponent LD gives in a statistical sense the mean size of the disturbances (or the spatial variations) of (. The model distribution of ( thereby generated is shown in Fig.5b. The degree of match to the individual station measurement results of Fig. 5a is evident. Here taking the ( = 0.5 contour line from Fig. 5a as an indication of correlation distance, it is seen that the scale factor is close to the model adopted value of 3.4. In particular, it should be noted that this anisotropy is significantly greater than as given by Stanislawska et al. (1996), who deduced scale-factor values of 1.1-1.4. No explanation can be offered for these disparities, though it should be appreciated that the Stanislawska et al. (1996) values are based on an assumed linear dependence of correlation coefficient decay with increase of separation distance and are for a single year at 12 stations.

Substitution for ( from eq (9) into eq (10) yields the variogram function appropriate to the model of:
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Fig. 5.  Spatial autocorrelation function for the European region


(a) from the composite measurement data


(b) from the model of eq (10) 
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It is recommended that this exponential expression be used in future kriging procedures applied to ionospheric data, in place of the linear semi-variogram relationship currently commonly employed. 

7. Assessment of errors in short-term forecasting

The above probability characteristics obtained on the basis of the analysis of a large number of measurements allow assessments to be made of theoretical error limitations associated with different methods of short-term forecasting using past measurement data alone. The minimal error (the rms value of () of a median-based prediction is the standard deviation of the process (, equal to the square root of the dispersion. The minimal error of a persistence-based prediction is the square root of the variogram function; for an autocorrelation-based prediction, it is the square root of the semi-variogram, eg 1.41 times less. These three errors are shown plotted for comparison in Fig. 6 against time lag, which is the same as numbers of hours prediction ahead. In this case, the median is calculated from the measured values for the previous 30 days and so changes only slowly with day number, the approach that would be adopted in an operational procedure.

The median-based prediction error is 14.7%. The two other error curves have similar shapes, differing by a scale factor of [image: image18.wmf]2

. The persistence-based prediction error is lower than that associated with using median values for the first four hours, but where a prediction is needed more in advance, errors become larger. On the other hand, the autocorrelation-based prediction error is less than that determined from medians, but in practice this method is effective only for the first 12 hours of prediction. For larger prediction times the autocorrelation becomes low and the error is close to that of the median-based prediction. There is a theorem in statistics, which states that if a process has a normal (Gaussian) probability distribution, then the autocorrelation method should give the most accurate results. However, as already noted, the real distribution differs in form from Gaussian at the smaller (’s, but is still close to it. So it seems reasonable that linear prediction methods, such as those relying on autocorrelation, give the most accurate estimates. All errors considered above are evaluated in terms of the standard deviation, which as already noted is the square root of the natural dispersion. So, to improve the accuracy of a prediction it is necessary to model the variations over shorter time scales of order 1-2 hours, which periods are less than the time scale of the autocorrelation function, and at present are regarded as random noise. Then, however, questions arise about the accuracy of the individual measurements themselves and about data sampling rates, but these aspects are outside the scope of the present paper.
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Fig. 6.  Mean-square error versus time lag for predictions based on past median values, autocorrelation and persistence formulations

8. Positive and negative disturbances.

In Fig. 7 are shown plotted the full statistics of the durations of negative and positive ( in the form of probability-density distributions versus excursion persistence with the same sense relative to the local median value. These results incorporate all measurement data examined, which include times of several major storms, but also periods when relatively quiet ionospheric conditions prevailed. Of course, the longer durations are proportionately less frequent, but the perhaps surprising feature found is that ( excursions with either polarity are equally probable. This means that positive deviations of foF2 occur as often as negative changes, although the latter are the more important from a telecommunications prediction stand-point. The above remarks apply entirely to the durations of the excursions, and no consideration has been made here of their respective amplitudes; probably the amplitudes of negative excursions under storm conditions, not revealed by the gross statistics of Section 5, are greater than the corresponding positive excursions. We repeated this analysis separately for the summer and winter months, but the shapes of the curves remain essentially the same, with no evident dependence of persistence duration on excursion polarity. To a first order, it may be concluded that on average excursion polarity is maintained for some 24 hours for less than 1% of the time.
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Fig. 7  Probability density of persistence duration of the sense of excursions from the local median value for positive and negative disturbances

9. Conclusions

European foF2 measurement data spanning a whole solar cycle for a wide range of locations provide best fit to a Laplacian day-to-day distribution, with proportionately greater numbers of cases of small deviations from the local median values than is given by the more familiar Gaussian distribution. The distribution is essentially non-skew, with a median value that differs by only 0.1% from the mean, and a standard deviation of around 15%, which figure is somewhat lower than values derived from measurements collected in the Americas, as adopted by the CCIR/ITU-R (1997) for international radio-service predictions. Widths associated with the Laplacian distribution are quoted for various probability levels. A reference map of variability is presented, and this shows increased variations with rise of geographic latitude.

The time autocorrelation function falls to a value of e-1 in about 8 hours, with some evidence of a 24-hour periodicity for low correlations. This result agrees well with the ‘time constant’ value obtained by Kutiev et al.,(1999) for data covering three solar cycles. Mean day-to-day variations of foF2 determined from the corresponding variogram function for a lag of a day or more are around 18%. A model is generated in which the spatial autocorrelation function has an exponential form and a longitude/latitude anisotropy scale factor of 3.4:1. It is recommended that this model be used in future kriging applications, in place of the presently adopted linear distance semi-variance relationship. 

The relative errors associated with linear prediction methods relying on extrapolation of past median values and on autocorrelation approaches are compared with those arising with non-linear persistence methods. Autocorrelation methods are favoured over median forecasts for the first 12 hours of prediction. The probability distributions of the durations that positive and negative excursions from the local median are sustained are similar, with no obvious seasonal dependence. Typically, excursion polarity is maintained for 12 hours.
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Вероятностна стастистика на относителните отклонения на foF2 от референтното ниво над Европейския регион
П. А. Брадли, П. Мухтаров, И. Кутиев
Резюме.  Измерванията на foF2 селектирани от базата данни на COST 251 за 15 европейски станции за период от 11 години (1981-1991 г.) са използвани, за да се проявят някои статистически свойства на относителните дневни отклонения на foF2 (означени като Ф) от техните съответстващи пълзящи месечни медиани. Ударението се поставя върху общата статистика, а не върху индивидуалните вариации. Стандартното отклонение на Ф, изчислено за всяка станция е използвано станция да се генерира карта в областта (40(,60()N и (-10(,45()Е, показваща общата вариабилност на foF2. Формата на вероятностната плътност на разпределението на Ф, усреднено по всички станции е сравнено с това на теоретичното Лапласово и  Гаусово разпределение (нормално разпределение). Поведението на Ф по време на геомагнитни бури е анализирано посредством вероятностното разпределение на дължината от време с положителни и отрицателни смущения. Временните и пространствени автокорелационни функции показват характеристичното време и пространствения мащаб на главните йоносферни смущения. Пространственото корелационно разстояние е определено отделно като функция на ширината и дължината и води до една анизотропия, която контрастира с тази определена от други групи.
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